Connect with us

Sometimes in space, even when you’re millions of kilometers from anything, you’re still being watched.  Or at least that’s the case for the Parker Solar Probe, which completed the 11th perihelion of its 24 perihelion journey on February 25th.  While the probe was speeding past the Sun, it was being watched by over 40 space and ground-based telescopes.

None of those telescopes were able to see Parker itself.  Even though the probe is the size of a bus, the Sun’s light itself would completely wash it out from any further out observational platforms.  Those platforms that were taking a look were simply monitoring the solar environment while the probe made its closest approach.  This type of multidisciplinary observational campaign is becoming more common lately, as we reported last year.  

The latest Parker campaign was one of the most well-coordinated of these.  It involved forty telescopes, with all manner of sensors and wavelengths of interest.  Included in the campaign were the newly commissioned Daniel K. Inouye Solar telescope in Hawai’i, and the Solar Orbiter, a sister solar observer managed by ESA.  One craft, in particular, provided a unique vantage point – MAVEN, a Mars orbiter operated by NASA, was roped into the observational campaign as well, allowing scientists to capture data from Mars’ perspective.

UT video describing the Parker Solar Probe mission.

Some of those same observatories were aimed in the general direction of one of the most exciting events to happen to Parker in its three and a half year history.  On February 15th, it was hit by a “large solar prominence” that smacked the spacecraft with charged particles that would have damaged lesser machines. 

Parker is designed just for this sort of turbulence, and its sensors were busy collecting data the whole time.  The probe has already dealt with plenty of “hyper-velocity dust,” as we reported late last year.  However, it won’t pose a danger to the spacecraft itself – it might just cause some noise in the probe’s instruments.  

That instrumental noise can be teased out once the probe’s handlers have data back in their hands.  But for now, that data is still stored mainly on the probe itself, as sending and receiving signals from that close to the Sun is difficult.  Parker last checked in a few days after the latest perihelion, but the next data transfer window opens from the end of March until the beginning of May.  

Parker Solar Probe's instruments.
Parker Solar Probe’s instruments.
Credit: NASA/JHUAPL

Synchronizing the data from all the different observatories will be difficult and is one of the primary reasons more multi-modal research hasn’t taken place so far.  Parker itself is continually setting new speed records as it hurtles around the largest object in our solar system.  Positioning it precisely as it does so is bound to be one of the main challenges for scientists looking to combine data it collected with those from more stationary and further away telescopes.

But with that combination will come insight into the ultraviolet, infrared, radio, and other spectra that Parker itself lacks the instrumentation to study.  Those observational capabilities might not always be trained toward the Sun, but solar activity is consistently ramping up, making it more interesting to observe in whatever wavelengths are available.  Parker will continue to play a vital role in that effort for the duration of its mission, which is currently planned to end in 2025. 

Learn More:
NASA – Telescopes Trained on Parker Solar Probe’s Latest Pass Around the Sun
space.com – When NASA’s Parker Solar Probe flew close by the sun, telescopes were watching from Earth and space
SciTechDaily – Powerful Telescopes Trained on Parker Solar Probe’s Latest Swing Around the Sun

Lead Image:
Depiction of Parker’s path around the Sun’s equator.
Credit – NASA / John Hopkins APL / Steve Gribben / SDO

The post 40 Telescopes Watched the Sun as the Parker Solar Probe Made its Most Recent Flyby appeared first on Universe Today.

Did you miss our previous article…
https://www.mansbrand.com/according-to-a-us-auditor-each-launch-of-the-space-launch-system-will-cost-an-unsustainable-4-1-billion/

Frontier Adventure

Reader Appreciation Sale: Join The Big Outside for 30% Off

Tet19 047 Me on Teton Crest Trail copy cropped 18 jpg

Dear reader,

I love the holidays, partly because I make a point of spending a lot of time outside with family and friends. But it’s also a time when I reflect on how much I enjoy my lifestyle—and how much I appreciate readers like you who follow and support my blog. To show my appreciation, I have a special gift for you.

Right now, I’m offering you 30% off the cost of a one-year subscription to The Big Outside.

That means you get full access to all stories at my blog—including my many stories about the trips I’ve taken, with my expert tips on planning them—for $41.97 instead of the usual cost of $59.95 for a full year, or just $3.50 a month.

That’s the biggest discount I offer on a subscription all year—just in time to start researching your trips for next year. Don’t miss out!

Go to my Join page now and click on the Subscribe button under the Annual subscription option (Best Value: $4.99/Month). Enter discount code TBO30 and the price will reset to $41.97. Then just fill out the form and complete the purchase. The 30% discount applies only to a one-year subscription. You also get one free or deeply discounted e-guide, a $12.95 value; I’ll personally email you the discount code for that after you subscribe.

Go to my Join page now and subscribe for a year for just $3.50 a month!

Tet19 047 Me on Teton Crest Trail copy cropped 19 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-guides to classic backpacking trips. Click here to learn how I can help you plan your next trip.

Michael Lanza of The Big Outside above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming.
” data-image-caption=”Me above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming; and in Death Hollow in southern Utah (lead photo, above).
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=900%2C600&ssl=1″ alt=”Michael Lanza of The Big Outside above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming.” class=”wp-image-61100″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=1024%2C683&ssl=1 1024w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=300%2C200&ssl=1 300w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=768%2C512&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=150%2C100&ssl=1 150w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?w=1200&ssl=1 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />Me above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming; and in Death Hollow in southern Utah (lead photo, above).

Are you already
Did you miss our previous article…
https://mansbrand.com/the-early-universe-had-no-problem-making-barred-spiral-galaxies/

Continue Reading

Frontier Adventure

The Early Universe Had No Problem Making Barred Spiral Galaxies

heic0611b 580x580 1 jpg

Spiral galaxies like the Milky Way are like cosmic snowflakes—no two are exactly alike. For many years, astronomers thought spirals couldn’t exist until the universe was about half its present age. Now, a newly discovered galaxy in the early Universe is challenging that idea.

CEERS-2112 is an early “cosmic snowflake” with spiral arms and a bar across its middle. The amazing thing is that it’s showing this structure when the Universe was only 2 billion years old. That’s about five billion years earlier than astronomers expected something like that to exist. The fact that a perfectly formed spiral exists so early tells us that our ideas about galaxy formation in early cosmic history need some re-tuning.

Surveying the Early Universe

This galaxy showed up in a survey done by the JWST called “Cosmic Evolution Early Release Science” (CEERS). It uses JWST imaging and spectroscopy to do a survey of the early Universe to find the earliest galaxy. The analysis of the CEERS-2112 galaxy was done by an international team led by astronomer Luca Constantin of the Centro de Astrobiología in Spain.

CEERS results should show astronomers the early populations of galaxies at high redshifts (distances). They will also help them estimate related star-formation conditions and black hole growth. Finally, the work should give some insight into the formation of galaxy disks and bulges. Essentially, CEERS data should add to our store of knowledge about first light and reionization (which occurred after the Big Bang) and explain the formation and evolution of early galaxies.

Early deep-field images of very distant galaxies show shreds of galaxies and irregular clumps of stars in the early Universe. That was evident in some of the first Hubble Deep-Field images. The most distant ones in the images looked more blobby and indistinct. And, some of them appeared to be colliding, which fits into the collisional model of galaxy formation.

This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF
This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF

Forming Galaxies in the Early Universe

Prior to the Hubble and JWST eras, astronomers really felt that it would take a long time to form spiral galaxies. They often describe a hierarchical model of galaxy formation. That’s where smaller clumpy galaxies collide to form larger ones. Over time, those objects begin to develop structures like spiral arms and bars.

“In such galaxies, bars can form spontaneously due to instabilities in the spiral structure or gravitational effects from a neighboring galaxy,” according to astronomer and team member Alexander de la Vega. He is a post-doctoral researcher currently at the University of California Riverside. “In the past, when the Universe was very young, galaxies were unstable and chaotic. It was thought that bars could not form or last long in galaxies in the early universe.”

The spiral arms are likely the result of density waves moving through the galaxy. The bars also form from density waves radiating out from the center. That compresses material in the arms and bars, leading to bursts of star formation. That could explain why these regions in galaxies seem brighter, with their populations of hot young stars. All of this takes time to accomplish. That’s why astronomers suggested that it would take about half the age of the Universe to form spiral galaxies.

CEERS-2112 is Part of the Early Universe

CEERS-2112 upends the discussion about spiral formation, according to de la Vega. “Finding CEERS-2112 shows that galaxies in the early Universe could be as ordered as the Milky Way,” he said. “This is surprising because galaxies were much more chaotic in the early Universe and very few had similar structures to the Milky Way.”

stsciDid you miss our previous article…
https://mansbrand.com/apollo-samples-contain-hydrogen-hurled-from-the-sun/

Continue Reading

Frontier Adventure

Apollo Samples Contain Hydrogen Hurled from the Sun

regolith jpeg

According to the U.S. National Academies of Sciences, Engineering, and Medicine, men should drink 3.7litres of water a day and women 2.7litres. Now imagine a crew of three heading to the Moon for a 3 week trip, that’s something of the order of 189 litres of water, that’s about 189 kilograms! Assuming you have to carry all the water rather than recycle some of it longer trips into space with more people are going to be logistically challenging for water carriage alone. Researchers from the U.S. Naval Research Laboratory (NRL) have discovered lunar rocks with hydrogen in them which, when combined with lunar oxygen provide a possibly supply for future explorers.

A total of 382 kilograms of rock was brought back from the Moon by the Apollo program (I weigh about 80kg so that’s almost five of me in weight – and its all muscle I promise!) Some of the samples were immediately studied while others were sealed for future research hoping that future instrumentation would be more sensitive.

A research team from NRL, led by Katherine D. Burgess and team members Brittany A. Cymes and Rhonda M. Stroud, have recently announced their findings whilst studying some of the lunar rock. They wanted to understand the source of water on the Moon and to understand its formation. Future lunar exploration especially permanent lunar bases will rely heavily upon existing lunar resources. The paper articulates “Effective use of the resource depends on developing an understanding of where and how within the regolith the water is formed and retained”.

Image showing Buzz Aldrin's footprint in the dusty lunar regolith - Credit NASA
Buzz Aldrin’s footprint in the lunar regolith – the soft powdery material found over the surface of the Moon (Credit – NASA)

Transmission electron microscopy was used as part of the study to explore lunar sample 79221. The technique utilises a particle beam of electrons to visualise specimens and generate a highly magnified image. In particular, the team looked at grains of the minerals apatite and merrillite and discovered signs of ‘space’ weathering due to the solar wind. The solar wind is a stream of charged particles that rush outward from the Sun at speeds of up to 1.6 million km per hour!

They found hydrogen signatures in samples in vesicles – small holes left behind after lava cools. The discovery confirms that solar wind is being trapped in detectable quantities proving a potential reservoir that could be accessible to future explorers.

Hydrogen itself is a tremendously useful resource and if that can be mined from the lunar surface material it can aide many aspects of exploration. The real buzz around the discovery is that it may finally resolve the mystery about the origins of lunar water and that it might well be the result of chemical interactions between the solar wind and lunar rocks. If we can understand the origins of the lunar water – and we may finally be close to that now – then we can be sure we use it effectively to reach out further into the Solar System.

Source : Hydrogen detected in lunar samples, points to resource availability for space exploration

The post Apollo Samples Contain Hydrogen Hurled from the Sun appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/the-best-clothing-layers-for-winter-in-the-backcountry-2/

Continue Reading

Trending