Connect with us

Astronomers have imaged dozens of protoplanetary discs around Milky Way stars, seeing them at all stages of formation. Now, one of these discs has been found for the first time — excitingly — in another galaxy. The discovery was made using the Atacama Large Millimeter/Submillimeter Array (ALMA) in Chile along with the , which detected the telltale signature of a spinning disc around a massive star in the Large Magellanic Cloud, located 160,000 light-years away.

“When I first saw evidence for a rotating structure in the ALMA data I could not believe that we had detected the first extragalactic accretion disc, it was a special moment,” said Anna McLeod, an associate professor at Durham University in the UK and lead author of the study published in Nature. “We know discs are vital to forming stars and planets in our galaxy, and here, for the first time, we’re seeing direct evidence for this in another galaxy.”

McLeod and her fellow researchers were doing a follow-up study on a system named HH 1177, which was located deep inside a gas cloud in the Large Magellanic Cloud LMC). In 2019, the researchers reported that in using the Very Large Telescope, they observed a jet emitted by a fledgling but massive star with a mass 12 times greater than our Sun. This was the first time such a jet has been observed in visible light outside the Milky Way, as they are usually obscured by their dusty surroundings. However, the relatively dust-free environment of the LMC allowed for HH 1177 to be observed at visible wavelengths. At nearly 33 light-years in length, it is one of the longest such jets ever observed.

eso1903a 1 jpg
This dazzling region of newly-forming stars in the Large Magellanic Cloud (LMC) was captured by the Multi Unit Spectroscopic Explorer instrument on ESO’s Very Large Telescope. The relatively small amount of dust in the LMC and MUSE’s acute vision allowed intricate details of the region to be picked out in visible light. Credit: ESO, A McLeod et al.

“We discovered a jet being launched from this young massive star, and its presence is a signpost for ongoing disc accretion,” McLeod said in an ESO press release. But to confirm that such a disc was indeed present, the team needed to measure the movement of the dense gas around the star.

The gas motion indicated that there is a radial flow of material falling onto a central disk-like structure. In their new observations, the team found that the disk exhibits signs of Keplerian rotation – which is a disk of material that obey’s Kepler’s laws of motion due to the dominance of a massive body at its center. Their observations revealed that “the rotating toroid [was] feeding an accretion disk and thus the growth of the central star,” the McLeod and team wrote in their paper. “The system is in almost all aspects comparable to Milky Way high-mass YSOs (young stellar objects) accreting gas from a Keplerian disk.

As matter is pulled towards a growing star, it cannot fall directly onto it; instead, it flattens into a spinning disc around the star. Closer to the center, the disc rotates faster, and this difference in speed is the clear evidence to show astronomers an accretion disc is present.

“The frequency of light changes depending on how fast the gas emitting the light is moving towards or away from us,” said Jonathan Henshaw, a research fellow at Liverpool John Moores University in the UK, and co-author of the study, in the ESO press release. “This is precisely the same phenomenon that occurs when the pitch of an ambulance siren changes as it passes you and the frequency of the sound goes from higher to lower.”

Massive stars like HH 1177 live fast and die hard. In the Milky Way, stars like this are challenging to observe because they are often clouded from view by the dusty material from which they form — which also obscures the disc that might be shaping around them.

“They form in heavily embedded regions full of gas and dust, such that the accretion phase typically occurs before the star has time to become exposed due to stellar feedback, whether internal or external,” the team wrote in their paper. “The primary reason for the lack of observations of extragalactic accretion disks around forming stars has been the limited spatial resolution of both ground- and space-based observatories.”

But the Large Magellanic Cloud is fundamentally different from because the stars that form there have a lower dust content than in the Milky
Did you miss our previous article…
https://mansbrand.com/a-gamma-ray-burst-disturbed-the-earths-ionosphere/

Continue Reading

Frontier Adventure

Gravastars are an Alternative Theory to Black Holes. Here’s What They’d Look Like

gravastar jpg

One of the central predictions of general relativity is that in the end, gravity wins. Stars will fuse hydrogen into new elements to fight gravity and can oppose it for a time. Electrons and neutrons exert pressure to counter gravity, but their stability against that constant pull limits the amount of mass a white dwarf or neutron star can have. All of this can be countered by gathering more mass together. Beyond about 3 solar masses, give or take, gravity will overpower all other forces and collapse the mass into a black hole.

While black holes have a great deal of theoretical and observational evidence to prove their existence, the theory of black holes is not without issue. For one, general relativity predicts that the mass compresses to an infinitely dense singularity where the laws of physics break down. This singularity is shrouded by an event horizon, which serves as a point of no return for anything devoured by the black hole. Both of these are problematic, so there has been a long history of trying to find some alternative. Some mechanism that prevents singularities and event horizons from forming.

One alternative is a gravitational vacuum star or gravitational condensate star, commonly called a gravastar. It was first proposed in 2001, and takes advantage of the fact that most of the energy in the universe is not regular matter or even dark matter, but dark energy. Dark energy drives cosmic expansion, so perhaps it could oppose gravitational collapse in high densities.

gravastar 1 jpg
Illustration of a hypothetical gravastar. Credit: Daniel Jampolski and Luciano Rezzolla, Goethe University Frankfurt

The original gravastar model proposed a kind of Bose-Einstein condensate of dark energy surrounded by a thin shell of regular matter. The internal condensate ensures that the gravastar has no singularity, while the dense shell of matter ensures that the gravastar appears similar to a black hole from the outside. Interesting idea, but there are two central problems. One is that the shell is unstable, particularly if the gravastar is rotating. There are ways to tweak things just so to make it stable, but such ideal conditions aren’t likely to occur in nature. The second problem is that gravitational wave observations of large body mergers confirm the standard black hole model. But a new gravastar model might solve some of those problems.

The new model essentially nests multiple gravastars together, somewhat like those nested Matryoshka dolls. Rather than a single shell enclosing exotic dark energy, the model has a layers of nested shells with dark energy between the layers. The authors refer to this model as a nestar, or nested gravastar. This alternative model makes the gravastar more stable, since the tension of dark energy is better balanced by the weight of the shells. The interior structure of the nestar also means that the gravitational waves of a nestar and black hole are more similar, meaning that technically their existence can’t be ruled out.

That said, even the authors note that there is no likely scenario that could produce nestars. They likely don’t exist, and it’s almost certain that what we observe as black holes are true black holes. But studies such as this one are great for testing the limits of general relativity. They help us understand what is possible within the framework of the theory, which in turn helps us better understand gravitational physics.

Reference: Jampolski, Daniel and Rezzolla, Luciano. “Nested solutions of gravitational condensate stars.” Classical and Quantum Gravity 41 (2024): 065014.

The post Gravastars are an Alternative Theory to Black Holes. Here’s What They’d Look Like appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/japans-new-h3-rocket-successfully-blasts-off/

Continue Reading

Frontier Adventure

Japan’s New H3 Rocket Successfully Blasts Off

240125 slim moon3 1024x513 1 jpg

Japan successfully tested its new flagship H3 rocket after an earlier version failed last year. The rocket lifted off from the Tanegashima Space Center on Saturday, February 17, reaching an orbital altitude of about 670 kilometers (420 miles). It deployed a set of micro-satellites and a dummy satellite designed to simulate a realistic payload.

With the successful launch of the H3, Japan will begin transitioning away from the previous H-2A rocket which has been in service since 2001 and is set to be retired after two more launches. Several upcoming missions depend on the H3, so this successful test was vital.

The launch came after two days of delays because of bad weather. The H3 rocket, built by Mitsubishi Heavy Industries, is now set to become the main launch vehicle of Japan’s space program. The rocket’s first flight in March 2023 failed to reach orbit, which resulted in the loss of an Earth imaging satellite.

The successful launch and deployment of the satellites was a relief for JAXA and members of the project. A livestream of the launch and subsequent successful orbit insertion showed those in the JAXA command cheering and hugging each other.

“I now feel a heavy load taken off my shoulders,” said JAXA H3 project manager Masashi Okada, speaking at a press briefing after the launch. “But now is the real start for H3, and we will work to steadily improve it.”

H3 stands about 57-meter (187-feet) tall and is designed to carry larger payloads. The two microsatellites were deployed approximately 16 minutes and 43 seconds after liftoff. They included an Earth observation satellite named CE-SAT-IE, developed by Canon Electronics, and TIRSAT, an infrared Earth observation instrument that will observe the temperature of the Earth’s surface and seawater.

“We feel so relieved to be able to announce the good results,” JAXA President Hiroshi Yamakawa said at the briefing. Yamakawa added that the main goals of H3 are to secure independent access to space and allow Japan to be competitive as international demand for satellite launches continues to grow. “We made a big first step today toward achieving that goal,” he said.

Image of SLIM lander on moon
An image sent back by a mini-probe shows Japan’s SLIM lander on its side on the lunar surface. (JAXA / Takara Tomy / Sony Group / Doshisha Univ.)

The successful launch comes after two other recent successes for JAXA last month where the H-2A rocket successfully placed a spy satellite into orbit, and just days later JAXA’s robotic SLIM (Smart Lander for Investigating Moon) made the first-ever precise “pinpoint” Moon landing – although unfortunately the lander came down on its side. However, during the final stages of the descent two autonomous rovers were successfully deployed: a tiny hopping robot and the other designed to roll about the surface. Both have sent back pictures and can continue exploring and sending back information even if SLIM cannot be operated.

The post Japan’s New H3 Rocket Successfully Blasts Off appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/european-satellite-ers-2-to-reenter-earths-atmosphere-this-week/

Continue Reading

Frontier Adventure

European Satellite ERS-2 to Reenter Earth’s Atmosphere This Week

ERS 2 reentry how and why is it happening pillars 1024x576 1 jpg

One of the largest reentries in recent years, ESA’s ERS-2 satellite is coming down this week.

After almost three decades in orbit, an early Earth-observation satellite is finally coming down this week. The European Space Agency’s (ESA) European Remote Sensing satellite ERS-2 is set to reenter the Earth’s atmosphere on or around Wednesday, February 21st.

Trail Blazing Mission

Launched atop an Ariane-4 rocket from the Kourou Space Center in French Guiana on April 21st, 1995, ERS-2 was one of ESA’s first Earth observation satellites. ERS-2 monitored land masses, oceans, rivers, vegetation and the polar regions of the Earth using visible light and ultraviolet sensors. The mission was on hand for several natural disasters, including the flood of the Elbe River across Germany in 2006. ERS-2 ceased operations in September 2011.

Reentry
Anatomy of the reentry of ERS-2. ESA

ERS-2 was placed in a retrograde, Sun-synchronous low Earth orbit, inclined 98.5 degrees relative to the equator. This orbit is typical for Earth-observing and clandestine spy satellites, as it allows the mission to image key target sites at the same relative Sun angle, an attribute handy for image interpretation.

Ice
ERS-2 tracks and ice floe. ESA

The Last Days of ERS-2

Reentry predictions for the satellite are centered on February 21st at 00:19 Universal Time (UT)+/- 25 hours. As we get closer, expect that time to get refined. The mass of ERS-2 at launch (including fuel) was 2,516 kilograms. Expect most of the satellite to burn up on reentry.

Orbit
The orbital path of ERS-2. Orbitron

For context, recent high profile reentries include the UARS satellite (6.5 tons, in 2011), and the massive Long March-5B booster that launched the core module for China’s Tiangong Space Station in late 2022 (weighing in at 23 tons).

ERS2
ERS-2 in the clean room on Earth prior to launch. ESA

ESA passed its first space debris mitigation policy in 2008, 13 years after ERS-2 was launched. In 2011, ESA decided to passively reenter the satellite, and began a series of 66 deorbiting maneuvers to bring its orbit down from 785 kilometers to 573 kilometers. Its fuel drained and batteries exhausted, ERS-2 is now succumbing to the increased drag of the Earth’s atmosphere as we near the peak of the current solar cycle.

North Prague Floods ERS

Continue Reading

Trending