Connect with us

Internal geological processes on the moon are almost non-existent.  However, when it gets smacked by a space rock, its surface can change dramatically.  Debris from that impact can also travel over large distances, transplanting material from one impact site hundreds of kilometers away, where it can remain untouched in its inert environment for billions of years.  

So when Apollo 17 astronauts took regolith samples at their landing site near Serenitatis Basin, they collected not only rocks from the basin itself, but from other impacts that had happened billions of years ago.  Differentiating material that actually formed part of the Basin from material that landed their after an impact has proven difficult.

Apollo 17 astronaut Harrison Schmitt collecting a soil sample in Serenitatis basin, his spacesuit coated with dust.
Apollo 17 astronaut Harrison Schmitt collecting a soil sample in Serenitatis basin, his spacesuit coated with dust.
Credit: NASA

One nearby impact in particular caused problems – material from the impact that created the Imbrium basin made up the majority of samples taken by the Apollo 17 astronauts.  Located slightly to the northwest of Serenitatis, this basin was caused by a much larger impact, which also happened much more recently than the one that created Serenitatis.  

Despite that age difference, it is hard to differentiate rocks from one basin or another just by looking at them.  A particular rock did stand out though – known as the Station 8 boulder after the geological station it was found next to, it did form as part of the Serenitatis basin rather than its younger neighbor.  It also surprised scientists with its age.

Image of the Station 8 Boulder from the Apollo 17 archives.  It's sample turns out to be the oldest of all those collected by Apollo 17 astronauts.
Image of the Station 8 Boulder from the Apollo 17 archives. It’s sample turns out to be the oldest of all those collected by Apollo 17 astronauts.
Credit – NASA

Previous estimates of the age of the basin put it at 3.8-3.9 billion years.  However, analysis of the phosphate materials in the sample returned from the Station 8 boulder show its age to be closer to 4.2 billion years.  That would make it one of the oldest craters on the moon, having formed only approximately 300 million years after the moon itself.

With plenty of manned moon missions on the horizon, this certainly won’t be the last time samples will be gathered from the basin.  And the techniques the scientists, led by a team at the Open University, used are applicable to other missions such as the sample return mission currently on its way back from Bennu.  Maybe in the future a crater will be found that’s even older than Serenitatis – but for now, it looks like we already have a sample of some of the oldest rocks possible from the moon.

Learn More:
The Open University – Lunar samples record impact 4.2 billion years ago that may have formed one of the oldest craters on the Moon
NASA – NASA Opens Previously Unopened Apollo Sample Ahead of Artemis Missions
UT – NASA Has a New Challenge to Bring Frozen Samples of the Moon Back to Earth

Lead Image:
Image of the moon highlighted with the two basins mentioned in
Did you miss our previous article…
https://www.mansbrand.com/5-reasons-you-must-backpack-the-wind-river-range/

Continue Reading
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Frontier Adventure

Starship | 360 Video of Liftoff

hqdefault 4 jpg

hqdefault 5 jpg

Starship returned to integrated flight testing with its second launch from Starbase in Texas. While it didn’t happen in a lab or on a test stand, it was absolutely a test. What we did with this second flight will provide invaluable data to continue rapidly developing Starship.

On November 18, 2023, Starship successfully lifted off at 7:02 a.m. CT from Starbase in Texas and achieved a number of major milestones, including all 33 Raptor engines on the Super Heavy Booster starting up successfully and, for the first time, completed a full-duration burn during ascent.

This 360-degree view comes from the top of the launch tower at Starbase in Texas, providing a front row seat to watch liftoff of the world’s most powerful launch vehicle ever developed.

Follow us on X.com/SpaceX and go to spacex.com for more on this exciting flight.

Did you miss our previous article…
https://mansbrand.com/10-expert-tips-for-hiking-with-trekking-poles-2/

Continue Reading

Frontier Adventure

10 Expert Tips for Hiking With Trekking Poles

Tet19 047 Me on Teton Crest Trail copy cropped 28 jpg

By
Michael Lanza

If
you’ve opened this story, you probably already recognize this truth: For
backpackers, dayhikers, climbers, mountain runners, and others, trekking poles
noticeably reduce strain, fatigue, and impact on leg muscles and joints, feet,
back—and really on your entire body. And that’s true no matter how much weight
you’re carrying, whether a daypack, an ultralight backpack, or a woefully heavy
backpack.

But
if you’ve opened this story, you also probably already have a sense of this
often-overlooked truth: How you use poles matters. If you use them correctly,
you’re gaining their benefits on virtually every step of your hike; if not,
they become dead weight. This story provides 10 highly effective tips on using
poles, from basics like adjusting pole length, gripping the strap, and moving uphill
and downhill on trails, to managing steep terrain, fording streams, advanced
tips for aiding balance, and more.

The tips below are based on my experience of many thousands of trail miles and more than three decades of backpacking, dayhiking, climbing, trail running, and taking ultra-hikes and ultra-runs—plus a quarter-century of testing and reviewing gear as a past field editor for Backpacker magazine and for many years running this blog. I believe this story will give you expert tips on hiking with trekking poles that you will not find anywhere else.

Tet19 047 Me on Teton Crest Trail copy cropped 29 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

A backpacker on the Teton Crest Trail in Grand Teton National Park.
” data-image-caption=”Jeff Wilhelm backpacking the Teton Crest Trail n Grand Teton National Park. Click photo for my e-book “The Complete Guide to Backpacking the Teton Crest Trail.”
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?fit=300%2C203&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?fit=900%2C608&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=900%2C608&ssl=1″ alt=”A backpacker on the Teton Crest Trail in Grand Teton National Park.” class=”wp-image-36371″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=1024%2C692&ssl=1 1024w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=300%2C203&ssl=1 300w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=768%2C519&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=1080%2C730&ssl=1 1080w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?w=1200&ssl=1 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />Jeff Wilhelm backpacking the Teton Crest Trail n Grand Teton National Park. Click photo for my e-book “The
Did you miss our previous article…
https://mansbrand.com/solar-physics-why-study-it-what-can-it-teach-us-about-finding-life-beyond-earth/

Continue Reading

Frontier Adventure

Solar Physics: Why study it? What can it teach us about finding life beyond Earth?

solar flare.en 750 jpg

Universe Today has investigated the importance of studying impact craters, planetary surfaces, exoplanets, and astrobiology, and what these disciplines can teach both researchers and the public about finding life beyond Earth. Here, we will discuss the fascinating field of solar physics (also called heliophysics), including why scientists study it, the benefits and challenges of studying it, what it can teach us about finding life beyond Earth, and how upcoming students can pursue studying solar physics. So, why is it so important to study solar physics?

Dr. Maria Kazachenko, who is a solar astrophysicist and assistant professor in the Astrophysical & Planetary Science Department at the University of Colorado, Boulder, tells Universe Today, “Solar physics studies how our Sun works, and our Sun is a star. Stars are building blocks of our Universe.  We are made of stardust. Stars provide energy for life. The Sun is our home star – it affects our life on Earth (space weather, digital safety, astronauts’ safety). Therefore, to be safe we need to understand our star. If we do not take our Sun into account, then sad things could happen. The Sun is the only star where we could obtain high-quality maps of magnetic fields, which define stellar activity. To summarize, studying the Sun is fundamental for our space safety and for understanding the Universe.”

The field of solar physics dates to 1300 BC Babylonia, where astronomers documented numerous solar eclipses, and Greek records show that Egyptians became very proficient at predicting solar eclipses. Additionally, ancient Chinese astronomers documented a total of 37 solar eclipses between 720 BC and 480 BC, along with keeping records for observing visible sunspots around 800 BC, as well. Sunspots were first observed by several international astronomers using telescopes in 1610, including Galileo Galilei, whose drawings have been kept to this day.

Presently, solar physics studies are conducted by both ground- and space-based telescopes and observatories, including the National Science Foundation’s (NSF) Daniel K. Inouye Solar Telescope located in Hawai’i and NASA’s Parker Solar Probe, with the latter coming within 7.26 million kilometers (4.51 million miles) of the Sun’s surface in September 2023. But with all this history and scientific instruments, what are some of the benefits and challenges of studying solar physics?

Dr. Kazachenko tells Universe Today that some of the scientific benefits of studying solar physics include “lots of observations; lots of science problems to work on; benefits from cross-disciplinary research (stellar physics, exoplanets communities)” with some of the scientific challenges stemming from the need to use remote sensing, sometimes resulting in data misinterpretation. Regarding the professional aspects, Dr. Kazachenko tells Universe Today that some of the benefits include “small and friendly community, large variety of research problems relying on amazing new observations and complex simulations, ability to work on different types of problems (instrumentation, space weather operation, research)” with some of the professional challenges including finding permanent employment, which she notes is “like everywhere in science”.

solar flare.en 750 1 jpg
Image of the Sun obtained by NASA’s Solar Dynamics Observatory (SDO) on June 20, 2013, with a solar flare discharging on the left side. (Credit: NASA/SDO)

As noted, the study of solar physics involves investigating space weather, which is when the solar wind interacts with the Earth, specifically with our magnetic field, resulting in the beautiful auroras observed in the high northern and southern latitudes. On occasion, the solar wind is strong enough to wreak havoc on satellites and even knock out power grids across the Earth’s surface. This was demonstrated with the Carrington Event on September 1-2, 1859, when fires at telegraph stations were reported across the globe, along with several strong aurora observations, as well. While this event occurred with the Earth’s magnetic field largely deflecting the incoming solar wind, life on this planet could be doomed without our magnetic field protecting us. Therefore, what can solar physics teach us about finding life beyond Earth?

Dr. Kazachenko tells Universe Today, “The Sun can tell us about stellar activity, including flares and coronal mass ejections that might be crucial
Did you miss our previous article…
https://mansbrand.com/gravastars-are-an-alternative-theory-to-black-holes-heres-what-theyd-look-like/

Continue Reading

Trending