Connect with us

Fast Radio Bursts (FRBs) are among the top mysteries facing astronomers today. First discovered in 2007 (the famous “Lorimer Burst“), these energetic events consist of huge bursts of radio waves that typically last mere milliseconds. While most events observed to date have been one-off events, astronomers have detected a few FRBs that were repeating in nature. The cause of these bursts remains unknown, with theories ranging from rotating neutron stars and magnetars to extraterrestrials!

Since the first event was detected fifteen years ago, improvements in our instruments and dedicated arrays have led to many more detections! In another milestone, an international team of astronomers recently made high-precision measurements of a repeating FRB located in the spiral galaxy Messier 81 (M81)- the closest FRB observed to date. The team’s findings have helped resolve some questions about this mysterious phenomenon while raising others.

The international team was made up of researchers from the Netherlands Institute for Radio Astronomy (ASTRON), the Anton Pannekoek Institute for Astronomy, the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory, the Perimeter Institute for Theoretical Physics, the Ventspils International Radio Astronomy Centre (VIRAC), and multiple universities and research institutes in the Netherlands, Germany, Sweden, Canada, China, India, Italy, the U.K., and the U.S.

Their findings were described in two papers published in parallel this week in the journals Nature and Nature Astronomy. The studies were led jointly by The team is led jointly by Franz Kirsten, a postdoctoral astronomer with the Chalmers University of Technology in Sweden and ASTRON, and Kenzie Nimmo, a Ph.D. student with ASTRON and the University of Amsterdam.

As they describe in their papers, the team set out to make high-precision measurements of a repeating FRB discovered in January 2020 in the constellation Ursa Major (aka. the Big Dipper). To study the source with the highest possible resolution and sensitivity, the team combined measurements from multiple instruments in the European VLBI Network (EVN) – a network of telescopes located primarily in Europe and Asia specializing in Very Long Baseline Interferometry (VLBI).

These were complemented by measurements taken from other powerful radio telescopes, like the Karl G. Jansky Very Large Array (VLA) in New Mexico. When they analyzed the measurements, they realized the repeating FRB came from the nearby spiral galaxy Messier 81 (M 81). This galaxy is located about 12 million light-years from Earth, making this event the closest FRB detected to date. As Kirsten explained in a recent Chalmers press release:

“We wanted to look for clues to the bursts’ origins. Using many radio telescopes together, we knew we could pinpoint the source’s location [in] the sky with extreme precision. That gives the opportunity to see what the local neighborhood of a fast radio burst looks like.

1 1024x576 2
A magnetar sparkles, hidden among ancient stars (in red) in the outskirts of the spiral galaxy Messier 81 (M 81). ?Credit: ASTRON/Daniëlle Futselaar, artsource.nl

What’s more, the team traced the FRB to the outskirts of the galaxy and realized that it had to be coming from a dense cluster of very old stars (a globular cluster). This was a rather unexpected find, as many FRBs are surrounded by young, massive, short-lived stars and many times the mass of our Sun. These stars end their lives as extremely dense and highly magnetized white dwarves known as magnetars.

“It’s amazing to find fast radio bursts from a globular cluster,” added Kirsten. “This is a place in space where you only find old stars. Further out in the universe, fast radio bursts have been found in places where stars are much younger. This had to be something else.” As noted, astronomers have come to believe that FRBs are the result of young stars undergoing gravitational collapse to become magnetars. This has been born out by a significant body of research in recent years.

However, these latest findings suggest that they may be linked to magnetars that formed when a white dwarf became massive enough to collapse under its
Did you miss our previous article…
https://www.mansbrand.com/does-the-entire-planet-have-a-mind-of-its-own/

Frontier Adventure

NASA’s Interstellar Mapping Probe Prepares for a 2025 Launch

two helio models 1024x373 1 jpg

Engineers at NASA have completed an important milestone in developing the Interstellar Mapping and Acceleration Probe (IMAP) spacecraft. It’s now moving from development and design to the assembly, testing, and integration phase, targeting a launch in late Spring 2025. After launch, the spacecraft will fly to the Earth-Sun L1 Lagrange Point and analyze how the Sun’s solar wind interacts with charged particles originating from outside the Solar System.

IMAP will follow up on discoveries and insights from the two Voyager spacecraft and the Interstellar Boundary Explorer (IBEX) and will help investigate two of the most important overarching issues in heliophysics: the energization of charged particles from the Sun and the interaction of the solar wind at its boundary with interstellar space.

The mission will map the boundaries of the heliosphere — the electromagnetic bubble surrounding and protecting our solar system — and help researchers better understand the boundary of the heliosphere.  This region is where the constant flow of particles from our Sun, called the solar wind, collides with material from the rest of the galaxy. This collision limits the amount of harmful cosmic radiation entering the heliosphere.  

two helio models 1024x373 2 jpg
An updated model (left) suggests the shape of the Sun’s bubble of influence, the heliosphere, may be a deflated croissant shape, rather than the long-tailed comet shape suggested by other research (right). The white lines represent the solar magnetic field, while the red lines represent the interstellar magnetic field. Image Credits Opher, et al

It will also help settle the debate on the actual shape of the heliosphere. A study in 2020, using data from several spacecraft, suggested that the Sun’s bubble of influence may be a deflated croissant shape, rather than the long-tailed comet shape that has previously been

The spacecraft will be positioned about 1.5 million km (1 million miles) from Earth and will collect and analyze particles that make it through to help chart and understand the range of particles in interplanetary space.  

The milestone the IMAP mission recently met is called Key Decision Point D, which allows the mission to move from development and design to the testing and integration phase. The targeted launch date was moved back one months, from late April to May 2025 to ensure that the project team has the adequate resources to “address risks and technical complexities during system integration and testing,” NASA said in a recent mission blog post.

The spacecraft is currently being assembled inside the clean room at the Johns Hopkins Applied Physics Lab in Laurel, Maryland. There is a live, 24-hour feed where you can watch the assembly, integration, and testing.

During the next few months, engineers will install the electronics, communications systems, thermal systems, propulsion, batteries, and many more complex systems to make the spacecraft work. Additionally, all 10 of IMAP’s instruments will soon start to arrive from around the world and be integrated with the spacecraft one by one. Finally, the spacecraft will begin testing before being sent to NASA’s Goddard Space Flight Center for final testing prior to launch.

Learn more about the mission and the huge team of universities and organizations that are part of IMAP at the mission website.

The post NASA’s Interstellar Mapping Probe Prepares for a 2025 Launch appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/does-betelgeuse-even-rotate-maybe-not/

Continue Reading

Frontier Adventure

Does Betelgeuse Even Rotate? Maybe Not

Betelgeuse pulsating UV HST jpeg

Betelgeuse is the well known red giant star in the corner of Orion the hunter. The name translated in some languages means ‘armpit of the giant’ which I think of all the star names, is simply the best! Betelgeuse has been fascinating observers of late not only because it unexpectedly faded a few years ago but more recently a study shows it’s super fast rotational speed which is, when compared to other supergiants, is like nothing seen before. 

One of the brightest stars in the northern hemisphere sky, in fact the tenth brightest, Betelgeuse has a stunning red colour. It is a semi regular variable star which means there is some regularity to its varied light output but there are occasions, perhaps lasting between 20 and 2000 days where the variation is interrupted. If Betelgeuse were placed in the Sun’s position then its visible surface would more than likely extend beyond the orbit of Mars and swallow up everything in between. 

Image showing the variability of Betelgeuse
1998/9 UV HST images of Betelgeuse showing asymmetrical pulsations with corresponding spectral line profiles (Credit :  STScI, NASA, ESA)

Like all stars, Betelgeuse rotates but a recent study using the Atacama Large Milimeter Array (ALMA) has showed that Betelgeuse is rotating faster than expected. Cool stars like Betelgeuse expand as they evolve and to conserve momentum the rotation must slow.  It is possible that mass loss due to stellar winds decreases rotation speeds further. The current theory predicts that red giants rotate at around 1km per second while red supergiants a little less than 0.1km per second. 

Image showing two of the receivers of the ALMA array in the Atacama Desert.
Two of the Atacama Large Millimeter/submillimeter Array (ALMA) 12-metre antennas (Credit : Iztok Bon?ina/ESO)

Current theory aside it seems there have been a number of observations of at least a few hundred giant stars rotating faster. Betelgeuse in particular has shown faster than expected rotation. Somewhat usefully, it’s proximity to Earth has meant its surface can be resolved and accurate measurements taken. Measurements showed that half of the visible hemisphere was blue shifted and the the other half red shifted. We can use this information to accurately calculate a rotational velocity.

When it comes to Betelgeuse, the radial velocity with ALMA was measured to be around 5.47 km per second. This value was compared against previous observations using Hubble Space Telescope and thankfully this agreed. One leading theory takes binary star evolution as a possible cause and in particular a merger with a low mass companion star. This is not an unusual process with an expected one-third of red supergiants experience stellar merger before their core collapses marking the end of their life. When it comes to red giants the team considered the impact of merging with planetary systems on the rotational velocity.

There are complications however in attaining sufficient data but the team modelled 3D radiation hydrodynamic simulations of red supergiants with properties similar to Betelgeuse. Throwing a proverbial spanner in the works, the team suggest that it is possible that the observations could be wrong and false signals have been picked up from churning convective plasma at the surface rather than the rotation of the star itself!

In an attempt to ascertain if it is possible to accurately measure the rotational speed of red giants and supergiants they had to develop new processing techniques to establish predictions that they could compare with observations of Betelgeuse. The team finally conclude that to be able to establish without doubt that Betelgeuse and other red supergiants are rotating
Did you miss our previous article…
https://mansbrand.com/5-reasons-you-must-backpack-the-teton-crest-trail-2/

Continue Reading

Frontier Adventure

5 Reasons You Must Backpack the Teton Crest Trail

Wind4 016 jpg

By Michael Lanza

On my first backpacking trip on the Teton Crest Trail in Grand Teton National Park, camped on Death Canyon Shelf, a broad, boulder-strewn and wildflower-carpeted bench at 9,500 feet, I awoke to the sound of heavy clomping outside my tent. I unzipped the tent door to investigate—and saw a huge bull elk standing just outside my nylon walls.

As I’ve come to learn over more than 20 trips to the Tetons since that first one over three decades ago, that elk encounter symbolized just one of several compelling reasons why every backpacker should move the Teton Crest Trail to the top of their to-do list: the wildlife. Where it occurred illustrates another reason: After years of backpacking all over the United States—including the 10 years I spent as a field editor for Backpacker magazine and even longer running this blog—Death Canyon Shelf is still one of my all-time favorite backcountry campsites.

Wind4 016 1 jpg
Hi, I’m Michael Lanza, creator of The Big Outside, which has made several top outdoors blog lists. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here to learn how I can help you plan your next trip.

Watching the sunset from a campsite in the North Fork Cascade Canyon, Grand Teton National Park.
” data-image-caption=”Watching the sunset from a campsite in the North Fork Cascade Canyon on the Teton Crest Trail in Grand Teton National Park.
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-090-A-campsite-on-the-Teton-Crest-Trail-North-Fork-Cascade-Canyon-Grand-Teton-N.P.jpg?fit=200%2C300&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-090-A-campsite-on-the-Teton-Crest-Trail-North-Fork-Cascade-Canyon-Grand-Teton-N.P.jpg?fit=683%2C1024&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-090-A-campsite-on-the-Teton-Crest-Trail-North-Fork-Cascade-Canyon-Grand-Teton-N.P.jpg?resize=432%2C648&ssl=1″ alt=”Watching the sunset from a campsite in the North Fork Cascade Canyon, Grand Teton National Park.” class=”wp-image-36411″ style=”width:432px;height:648px” width=”432″ height=”648″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-090-A-campsite-on-the-Teton-Crest-Trail-North-Fork-Cascade-Canyon-Grand-Teton-N.P.jpg?w=800&ssl=1 800w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-090-A-campsite-on-the-Teton-Crest-Trail-North-Fork-Cascade-Canyon-Grand-Teton-N.P.jpg?resize=200%2C300&ssl=1 200w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-090-A-campsite-on-the-Teton-Crest-Trail-North-Fork-Cascade-Canyon-Grand-Teton-N.P.jpg?resize=768%2C1152&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-090-A-campsite-on-the-Teton-Crest-Trail-North-Fork-Cascade-Canyon-Grand-Teton-N.P.jpg?resize=683%2C1024&ssl=1 683w” sizes=”(max-width: 432px) 100vw, 432px” data-recalc-dims=”1″ />Watching the sunset from a campsite in the North Fork Cascade Canyon, Grand Teton National Park.

And I certainly consider the Teton Crest Trail one of the 10 best backpacking trips in America. It’s the one I keep going back to again and again. (Read about my most recent trip.)

I think the five reasons I lay out below will give you insights into questions you might have about this classic hike—and inspire you to go do it.

But know this important planning detail: The

Continue Reading

Trending