Connect with us

Like many of you, I love a good meteor shower. I have fond memories of the Leonid meteor storm back in 1999 when several hundred per hour were seen at peak. Sadly meteor storms are not that common unlike meteor showers of which, there are about 20 major showers per year. Wait, there’s another one and this time it comes from the debris left behind from Comet 46P/Wirtanen with an expected peak on December 12. Last year, 23 meteors were seen on that night that matched the location of the comets trail. 

Comets (and some asteroids) leave a trail of debris behind them like a trail of celestial breadcrumbs. If the orbit of a comet crosses the orbit of the Earth then the particles from the debris (that are often no larger than grains of sand) collide with our atmosphere. At the immense speeds (of the order of 60 km per second, the particles falling through the atmosphere cause the gas to glow giving rise to the classic shooting star we see in the sky. Because the orbits of Earth and comets are relatively fixed, this process repeats itself every time we go through the same part of the orbit giving us the familiar annual meteor showers.

One such comet that it seems may become host to a new annual shower is Comet 46P/Wirtanen (46P). It nearly hit the headlines previously when it had been initially selected as the target for the Rosetta mission which, as you may recall, visited 67P/Churyumov-Gerasimenko instead.  46P is known as a short period comet taking 5.4 years to complete one orbit of the Sun. It is among the family of comets known as a Jupiter comet which has a most distant point from the Sun of between 5 and 6 astronomical units (1 AU is the average distance between the Sun and Earth). Observations have suggested it has a diameter of about 1.4km. 

1567215847897 Rosetta NavCam comet 67P 20150314 enhanced 625 1 jpg
Comet 67P/Churyumov-Gerasimenko from Rosetta mission (Credit – NASA)

Due to the high levels of ice present in comets, it’s not unusual for active areas on their surface to appear as the ices sublimate into gasses or pockets of gas escape. Observations using the TRAPPIST telescope (The Transiting Planets and Planetesimals Small Telescope) suggest 40% of the surface is active which is higher than the usual 5-10% for Jupiter family comets. A recent study found the presence of mm sized dust particles in the comet’s coma which should be visible upon entering Earth’s atmosphere.

The orbit of 46P has a very low minimum orbit intersection distance (MOID) to Earth of just 0.071AU. The MOID between two objects that orbit a common point is the distance between the closest points of their orbits. The low MOID and the mm sized particles mean there is a high liklihood it could be the source of a meteor shower. Previous observations however have revealed no positive confirmation of peaks in 2017 and 2019.

During the 2017 and 2019 predictions, it seems the low velocity of the particles coupled with the radiant (the point of apparent origin of the shower) below the horizon suggest that visibility may have been severely limited. The radiant of this predicted shower is in the constellation Sculptor and the shower has been dubbed the Lambda Sculptorids.

The prediction for the 2023 shower, which predicted an encounter from a stream of debris from an outburst in 1974, suggested an outburst of meteors on December 12 between 12:08 and 20:06. A further outburst was predicted between 17:05 and 06:26 on December 13. The team who presented their findings in Astronomy and Astrophysics reported meteor activity as predicted and detected 23 meteors from the new shower on the night of December 12 2023. The team are now looking at the models to see what we might expect to see this year and whether Lamba Sculptorids need to be added to our list of annual meteor showers.

Source : Observations of the new meteor shower from comet 46P/Wirtanen

The post Astronomers Discover a New Meteor Shower. The Source is Comet 46P/Wirtanen appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/the-12-best-dayhikes-in-yosemite-2/

Continue Reading

Frontier Adventure

Stellar Winds Coming From Other Stars Measured for the First Time

interstellar jpg

An international research team led by the University of Vienna has made a major breakthrough. In a study recently published in Nature Astronomy, they describe how they conducted the first direct measurements of stellar wind in three Sun-like star systems. Using X-ray emission data obtained by the ESA’s X-ray Multi-Mirror-Newton (XMM-Newton) of these stars’ “astrospheres,” they measured the mass loss rate of these stars via stellar winds. The study of how stars and planets co-evolve could assist in the search for life while also helping astronomers predict the future evolution of our Solar System.

The research was led by Kristina G. Kislyakova, a Senior Scientist with the Department of Astrophysics at the University of Vienna, the deputy head of the Star and Planet Formation group, and the lead coordinator of the ERASMUS+ program. She was joined by other astrophysicists from the University of Vienna, the Laboratoire Atmosphères, Milieux, Observations Spatiales (LAMOS) at the Sorbonne University, the University of Leicester, and the Johns Hopkins University Applied Physics Laboratory (JHUAPL).

Astrospheres are the analogs of our Solar System’s heliosphere, the outermost atmospheric layer of our Sun, composed of hot plasma pushed by solar winds into the interstellar medium (ISM). These winds drive many processes that cause planetary atmospheres to be lost to space (aka. atmospheric mass loss). Assuming a planet’s atmosphere is regularly replenished and/or has a protective magnetosphere, these winds can be the deciding factor between a planet becoming habitable or a lifeless ball of rock.

interstellar 1 jpg
Logarithmic scale of the Solar System, Heliosphere, and Interstellar Medium (ISM). Credit: NASA-JPL

While stellar winds mainly comprise protons, electrons, and alpha particles, they also contain trace amounts of heavy ions and atomic nuclei, such as carbon, nitrogen, oxygen, silicon, and even iron. Despite their importance to stellar and planetary evolution, the winds of Sun-like stars are notoriously difficult to constrain. However, these heavier ions are known to capture electrons from neutral hydrogen that permeates the ISM, resulting in X-ray emissions. Using data from the XXM-Newton mission, Kislyakova and her team detected these emissions from other stars.

These were 70 Ophiuchi, Epsilon Eridani, and 61 Cygni, three main sequence Sun-like stars located 16.6, 10.475, and 11.4 light-years from Earth (respectively). Whereas 70 Ophiuchi and 61 Cygni are binary systems of two K-type (orange dwarf) stars, Epsilon Eridani is a single K-type star. By observing the spectral lines of oxygen ions, they could directly quantify the total mass of stellar wind emitted by all three stars. For the three stars surveyed, they estimated the mass loss rates to be 66.5±11.1, 15.6±4.4, and 9.6±4.1 times the solar mass loss rate, respectively.

In short, this means that the winds from these stars are much stronger than our Sun’s, which could result from the stronger magnetic activity of these stars. As Kislyakova related in a University of Vienna news release:

“In the solar system, solar wind charge exchange emission has been observed from planets, comets, and the heliosphere and provides a natural laboratory to study the solar wind’s composition. Observing this emission from distant stars is much more tricky due to the faintness of the signal. In addition to that, the distance to the stars makes it very difficult to disentangle the signal emitted by the astrosphere from the actual X-ray emission of the star itself, part of which is “spread” over the field-of-view of the telescope due to instrumental effects.”

608c8c49dc jpeg
XMM-Newton X-ray image of the star 70 Ophiuchi (left) and
Did you miss our previous article…
https://mansbrand.com/how-to-know-how-hard-a-hike-will-be-3/

Continue Reading

Frontier Adventure

How to Know How Hard a Hike Will Be

Tet19 047 Me on Teton Crest Trail copy cropped 16 jpg

By Michael Lanza

“How hard will that hike be?” That’s a question that
all dayhikers and backpackers, from beginners to experts, think about all the
time—and it’s not always easy to answer. But there are ways of evaluating the
difficulty of any hike, using readily available information, that can greatly
help you understand what to expect before you even leave home. Here’s
how.

No matter how relatively easy or arduous the hike you’re considering, or where you fall on the spectrum of hiking experience or personal fitness level, this article will tell you exactly how to answer that question—and which questions to ask and what information to seek to reach that answer. This article shares what I’ve learned over four decades of backpacking and dayhiking, including the 10 years I spent as a field editor for Backpacker magazine and even longer running this blog, and this knowledge can help ensure that you and your companions or your family don’t get in over your heads.

Whether you’re new to dayhiking or backpacking, a
parent planning a hike with young kids, or a fit and experienced dayhiker or
backpacker contemplating one of the toughest hikes you’ve ever attempted, it’s
important to have a good sense of what you’ll face on a new and unfamiliar hike
and whether it’s within your abilities.

Tet19 047 Me on Teton Crest Trail copy cropped 17 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

A backpacker hiking the Dawson Pass Trail in Glacier National Park.
” data-image-caption=”Pam Solon backpacking the Dawson Pass Trail in Glacier National Park. Click photo to read about backpacking in Glacier.
” data-medium-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park-1024×683.jpg?resize=900%2C600&ssl=1″ alt=”A backpacker hiking the Dawson Pass Trail in Glacier National Park.” class=”wp-image-61235″ srcset=”https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 1024w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 300w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 768w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 150w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />Pam Solon backpacking the Dawson Pass Trail in Glacier National Park. Click photo to read about backpacking in Glacier.

Exceeding your limits or those of someone with you can
invite unwanted consequences—and the person with the least stamina,
abilities, or experience often dictates any party’s pace, limits, and outcomes.
Those consequences
Did you miss our previous article…
https://mansbrand.com/the-12-best-down-jackets-of-2024/

Continue Reading

Frontier Adventure

The 12 Best Down Jackets of 2024

Tet19 047 Me on Teton Crest Trail copy cropped 14 jpg

By Michael Lanza

Whatever you need an insulated jacket for, there’s a down or synthetic puffy for your needs, within your budget. And whether you want a puffy jacket for outdoor activities like backpacking, camping, skiing, climbing, and hut treks, or just to keep you warm around town or at outdoor sporting events, this review will help you figure out how to choose the right jacket for your purposes, and it spotlights the best down and synthetic insulated jackets available today.

I selected the jackets covered in this review after extensive testing on backpacking, camping, backcountry ski touring, climbing and other backcountry trips. I’ve field-tested dozens of insulated jackets over nearly three decades of testing and reviewing gear, formerly as the lead gear reviewer for Backpacker magazine for 10 years and even longer running this blog.

Technology has blurred the traditional lines between down and synthetics, with water-resistant down that traps heat even when wet—all but eliminating the weakness that had long been the Achilles heel of down—and synthetic insulation materials that approach the warmth-to-weight ratio and compressibility of down.

If you’d prefer, scroll past my buying tips to dive immediately into the jacket reviews.

If you have a question for me or a comment on this review, please leave it in the comments section at the bottom of this story. I try to respond to all comments.

Tet19 047 Me on Teton Crest Trail copy cropped 15 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-guides to classic backpacking trips. Click here to learn how I can help you plan your next trip.

The Black Diamond Approach Down Hoody.
” data-image-caption=”The Black Diamond Approach Down Hoody in the Grand Canyon.
” data-medium-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1-1024×683.jpg?resize=900%2C600&ssl=1″ alt=”The Black Diamond Approach Down Hoody.” class=”wp-image-52287″ srcset=”https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 1024w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 300w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 768w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 150w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />The Black Diamond Approach Down Hoody in the Grand Canyon.

How to Choose a Synthetic or Down Jacket

Insulated jackets today differ not only in type and amount of insulation, but also in water resistance, breathability, and as always, design features like the hood and pockets. When choosing between down and synthetic models, consider the usual conditions and temperatures in which you’ll use it—in other words, how wet and cold you expect to get, and your body type (how easily you get cold)—as well as the seasonal and activity versatility you require. Some questions to
Did you miss our previous article…
https://mansbrand.com/finally-an-explanation-for-the-moons-radically-different-hemispheres/

Continue Reading

Trending