Connect with us

The Force is with us, according to cosmologists working to understand a mysterious “something” that’s making the universe expand. Its name? Dark energy. And, it turns out that it’s been present everywhere throughout cosmic history.

Astronomers have known since the 1920s that the universe is expanding. That understanding began with Edwin Hubble’s groundbreaking observation of a Type I supernova in the Andromeda Galaxy. And, astronomy trucked along for many years, using that expansion to measure distances and other parameters in the cosmos. Then, in 1998, something happened. Astronomers discovered that the cosmic expansion is speeding up.

The culprit? This completely not-at-all-understood dark energy force which can’t be seen, but with effects that can be detected. Some explain it as a property of space that causes the universe to expand faster and faster. Others suggest that it’s some kind of new energy fluid or a field that fits throughout space, but has an effect on the expansion of the Universe. It could also be something that doesn’t fit our current theories about gravity, and that a new theory of gravity could account for dark energy’s effects.

There’s no consensus yet about which of these theories is correct. However, its discovery immediately raised a bunch of questions, such as, when did the expansion rate accelerate? Will that change, too? Was it the same rate throughout the universe across all time?

This diagram reveals changes in the rate of expansion since the universe's birth nearly 15 billion years ago. The more shallow the curve, the faster the rate of expansion. The curve changes noticeably about 7.5 billion years ago when objects in the universe began flying apart at a faster rate. Astronomers theorize that the faster expansion rate is due to a mysterious, dark force called
This diagram reveals changes in the rate of expansion since the universe’s birth nearly 15 billion years ago. The more shallow the curve, the faster the rate of expansion. The curve changes noticeably about 7.5 billion years ago when objects in the universe began flying apart at a faster rate. Astronomers theorize that the faster expansion rate is due to a force called “dark energy” that is pulling galaxies apart. Credit: NASA/STSci/Ann Feild

Dark Energy, eROSITA, and Galaxy Clusters

To answer those, a group of researchers used something called eROSITA to look at a specific subset of galaxy clusters across time. eROSITA is the main X-ray-sensitive instrument aboard the Spectrum-ROENTGEN-GAMMA (SRG) mission launched in 2019. (Currently, it is shut down due to the ongoing conflict between Russia and Ukraine.) One of its jobs is to do a complete all-sky survey in the medium energy X-ray range (up to 10 keV). The data it returns should help probe the nature and ubiquity of dark energy by studying up to 100,000 galaxy clusters and the material between them. It also studies obscured black holes in galaxies and looks at X-ray sources ranging from young stars and supernova remnants to X-ray binaries.

Astronomers I-Non Chieu of Taiwan’s National Cheng Kung University and Matthias Klein, Sebastian Bocquet, and Joseph Mohr at Ludwig Maximilians-Universitat in Munich used eROSITA Final Equatorial Depth Survey (eFEDS) data taken before the shutdown to characterize about 500 low-mass galaxy clusters. It’s one of the largest such samples and it “saw” them over the past ten billion years. That’s around 3/4 of the age of the Universe.

Combining Data to Measure Distant Galaxy Clusters

The team coupled the eFEDS data with optical data taken using the Hyper Suprime-Cam instrument at the Subaru Telescope in Hawai’i. They used the combined data to characterize the galaxy clusters in eFEDS and measure their masses using weak gravitational lensing. The combo enabled the first cosmological study using galaxy clusters detected by eROSITA.

Cosmologists have long assumed that dark energy is roughly 68& of the Universe. This new result “ups” that number. Essentially, the team showed that dark energy makes up around 76% of the total energy density in the Universe.

The analysis shows that dark energy’s distribution is also quite uniform in space and constant in time. “Our results also agree well with other independent approaches, such as previous galaxy cluster studies as well as those using weak gravitational lensing and the cosmic microwave background,” said
Did you miss our previous article…
https://mansbrand.com/best-toys-for-airplane-travel/

Frontier Adventure

Will Wide Binaries Be the End of MOND?

It’s a fact that many of us have churned out during public engagement events; that at least 50% of all stars are part of binary star systems. Some of them are simply stunning to look at, others present headaches with complex orbits in multiple star systems. Now it seems wide binary stars are starting to shake the foundations of physics as they question the very theory of gravity. 

General relativity has been part of the foundation of modern physics since it was published by Albert Einstein in 1915. One of the challenges though is that, along with normal matter (known by its official name baryonic matter) general relativity is unable to explain the current theories of the evolution of the universe without dark matter.  Alas dark matter has not been observed in any lab experiment or indeed directly in the sky. 

The idea for dark matter was developed in the early 1930’s to explain the movement of the galaxies in the Coma Cluster.  It was Fritz Zwicky who coined the phrase dark matter in 1933 to explain the unseen matter that was driving the movement.  Current theories suggest there is something like five times more dark matter in the Universe than there is normal matter but It’s a type of matter that we know little about other than it doesn’t interact with normal baryonic matter. 

Dark Flow
The Coma Galaxy Cluster. It appears to participate in the dark flow.

The standard model – that describes how the building blocks of matter interact – assumes that the current laws of gravity are all correct however a ‘tweak’ is required to explain certain observations and that tweak is called dark matter. In other words, we can see the effect of dark matter but we just haven’t actually directly detected it yet. In a paper published by J. W. Moffat, there is a bold suggestion that maybe it’s the gravitational model that is incorrect.

Enter MOND – ‘Modified Newtonian Dynamics’ – which proposes an adjustment to Newton’s second law (nicely encapsulated in the formula that force equals mass multiplied by acceleration) to explain the movement of galaxies without dark matter. The theory, proposed by M. Milgrom in 1983 suggests that the gravitational force exerted upon a star in the outer reaches of a galaxy was proportional to the square of its centripetal acceleration (instead of the centripetal acceleration itself).  Remember the existing models do not explain this without inserting dark matter which we have yet to discover.  

The paper by Moffat suggests that they should be able to detect the changes proposed by MOND but in applying the formulas correctly the galaxy constrains must be significantly affected. Wide binary data from Gaia (the Global Astrometric Interferometer) seems to conclude that any modified gravity theory must reliy upon scale and length rather than acceleration.  If this continues to be the case for future observations then it may well mark the demise of the MOND model for good. 

Source : Wide Binaries and Modified Gravity (MOG)

The post Will Wide Binaries Be the End of MOND? appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/red-sprites-are-best-seen-from-space/

Continue Reading

Frontier Adventure

Red Sprites are Best Seen from Space

Davis camera view of a red sprite pillars

Planet Earth is full of some truly awe-inspiring spectacles, but few are as intriguing as a sprite, which are officially known as a Transient Luminous Event (TLE) and consist of large-scale electric discharges that shoot upwards while occurring above the cloud tops in the Earth’s mesosphere at approximate altitudes of 50-90 km (31-56 mi). In October 2023, European Space Agency (ESA) astronaut, Dr. Andreas Mogensen, who is currently onboard the International Space Station (ISS) as Commander of the Expedition 70 mission, took an incredible image of a red sprite with the Davis camera as part of the Thor-Davis experiment and his Huginn mission.

Sprites have been observed from the ground and aircraft. However, the preferred observation method is from outer space due to the sprites occurring above the cloud tops and the low altitude of the ISS offering pristine views of these unique lightning features. While they are observed above cloud tops, they are hypothesized to originate from normal lightning near the Earth’s surface and act as a “balancing mechanism” used by the Earth’s atmosphere to distribute vertical electrical charges.

Since red sprites are essentially lightning strikes and visible for only a fraction of a second, specialized event-based cameras such as the Davis camera are required to precisely capture them. The Davis camera contrasts with a normal camera in that it does not take direct photographs, but instead creates images by sensing light and contract variances. Through this, the Davis camera capabilities are analogous to a normal camera taking 100,000 images per second.

Davis camera view of a red sprite pillars 1
Images of a red sprite taken by the Davis camera from the International Space Station in October 2023 by Expedition 70 Commander, Dr. Andreas Mogensen. (Credit: ESA/DTU/ A. Mogensen)

“These images taken by Andreas are fantastic,” said Dr. Olivier Chanrion, who is a senior researcher at Danish Technical University (DTU) Space and lead scientist for this experiment. “The Davis camera works well and gives us the high temporal resolution necessary to capture the quick processes in the lightning.”

The Thor-Davis experiment builds off the Thor experiment also conducted by Dr. Mogensen during his first mission to the ISS in 2015. During that experiment, Dr. Mogensen shot a 160-second video displaying 245 blue jets, which are another type of lightning event that shoots up towards space, with results from those findings being published in a 2016 study in Geophysical Research Letters.

The earliest recorded report of sprites—though they weren’t called that right away—occurred in November 1885 from the R.M.S. Moselle as it was leaving port in Jamacia with the sprites then being described as a “meteorological phenomenon” while “sometimes tinged with prismatic hues, while intermittently would shoot vertically upwards continuous darts of light displaying prismatic colours in which the contemporary tints, crimson and green, orange and blue, predominated.”

It took more than 100 years for the first photographic evidence of sprites to happen, when a team of scientists from the University of Minnesota accidentally imaged electrical discharges using a low-light-level television camera in 1989, with their findings later being published in Science the following year. It wasn’t until a 1995 study published in Geophysical Research Letters that these electrical charges were officially dubbed “sprites”. In the last several decades, sprites have been observed from all continents except for Antarctica, along with being observed from the ground, aircraft, and even outer space.

potw2234a 750 1 jpg
Image of red sprites taken in 2022 from the European Southern Observatory’s (ESO) La Silla Observatory in Chile. (Credit: Zdenek Bardon/ESO)

What new discoveries about sprites will researchers make in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Red Sprites are Best Seen from Space appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/europa-clipper-could-help-discover-if-jupiters-moon-is-habitable/

Continue Reading

Frontier Adventure

Europa Clipper Could Help Discover if Jupiter’s Moon is Habitable

europa crust scaled e1701714222387 jpg

Since 1979, when the Voyager probes flew past Jupiter and its system of moons, scientists have speculated about the possibility of life within Europa. Based on planetary modeling, Europa is believed to be differentiated between a rocky and metallic core, an icy crust and mantle, and a warm water ocean up to 100 km (62 mi) in depth. Scientists theorize that this ocean is maintained by tidal flexing, where interaction with Jupiter’s powerful gravitational field leads to geological activity in Europa’s core and hydrothermal vents at the core-mantle boundary.

Investigating the potential habitability of Europa is the main purpose of NASA’s Europa Clipper mission, which will launch on October 10th, 2024, and arrive around Jupiter in April 2030. However, this presents a challenge for astrobiologists since the habitability of Europa is dependent on many interrelated parameters that require collaborative investigation. In a recent paper, a team of NASA-led researchers reviewed the objectives of the Europa Clipper mission and anticipated what it could reveal regarding the moon’s interior, composition, and geology.

The team consisted of researchers from the Johns Hopkins University Applied Physics Laboratory (JHUAPL), the Beyond Center at Arizona State University, the Woods Hole Oceanographic Institution (WHOI), Honeybee Robotics, the Southwest Research Institute (SwRI), the Planetary Science Institute (PSI), the Lunar and Planetary Laboratory (LPL), NASA’s Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL), and multiple universities. Their paper, “Investigating Europa’s Habitability with the Europa Clipper,” recently appeared in Space Science Reviews.

europa crust scaled e1701714222387 1 jpg
Could shallow lakes be locked away in Europa’s crust? Europa Clipper will find out. Credit: NASA

What is “Habitability”?

When it comes to the search for life beyond Earth (aka. astrobiology), all of humanity’s efforts are currently focused on Mars. This will change in the coming years as missions destined for the outer Solar System conduct detailed studies of “Ocean Worlds” – icy bodies with interior oceans. This includes Europa, Ganymede, Titan, Enceladus, Triton, and possibly Pluto and Charon. The Europa Clipper will be the first of these missions to arrive – followed by the ESA’s JUpiter ICy moons Explorer (JUICE) in 2031. It will spend the next four years orbiting Jupiter and making close flybys of Europa, studying its surface and interior with its advanced suite of instruments. As the Europa Study Team summarized in their 2012 report:

“Jupiter’s moon Europa is one the most promising candidates for hosting life today among ocean worlds in the Solar System. In its investigation of Europa’s habitability, the Europa Clipper mission seeks to understand the provenance of water, essential chemical elements and compounds, and energy, and how they might combine to make this moon’s environments suitable to support life.”

As the NASA-led team indicated in their study, the purpose of the Europa Clipper mission is not to detect life itself but to assess Europa’s ability to support life as we know it. This will consist of confirming (or refuting) the existence of Europa’s interior ocean and determining if it possesses the necessary chemical and energy sources for life to thrive. However, one of the main challenges in investigating the moon’s habitability is the nature of the concept itself. Nevertheless, the relevant parameters include hospitable temperatures, pressure, pH, salinity, and the presence of a solvent (such as water).

Steven D. Vance, the Deputy Section Manager for the Planetary Interiors and Geophysics Group at NASA’s Jet Propulsion Laboratory (JPL), was also the paper’s lead author. As he explained to Universe Today via email:

“Habitability is the potential for supporting life, but not necessarily the presence of life. Some environments are more habitable than others. For example, a lush rainforest provides
Did you miss our previous article…
https://mansbrand.com/nasas-interstellar-mapping-probe-prepares-for-a-2025-launch/

Continue Reading

Trending