Connect with us

The idea of a mirror universe is a common trope in science fiction. A world similar to ours where we might find our evil doppelganger or a version of us who actually asked out our high school crush. But the concept of a mirror universe has been often studied in theoretical cosmology, and as a new study shows, it might help us solve problems with the cosmological constant.

The Hubble constant, or Hubble parameter, is a measure of the rate at which our universe expands. This expansion was first demonstrated by Edwin Hubble, using data from Henrietta Leavitt, Vesto Slipher, and others. Over the next several decades, measurements of this expansion settled on a rate of about 70 km/sec/Mpc. Give or take quite a bit. Astronomers figured that as our measurements became precise, the various methods would settle on a common value, but that didn’t happen. In fact, in the past several years measurements have become so precise they outright disagree. This is sometimes known as the cosmic tension problem.

At this point the observed values of the Hubble constant cluster into two groups. Measurements of fluctuations in the cosmic microwave background point toward a lower value, around 67 km/sec/Mpc, while observations of objects such as distant supernovae yield a higher value around 73 km/sec/Mpc. Something clearly doesn’t add up, and theoretical physicists are trying to figure out why. This is where the mirror universe might come in.

mirror 1024x631 2
A mirror of our world in the stars. Credit: Beate Bachmann, via Pixabay

Wild ideas tend to fall in and out of popularity in theoretical physics. The mirror universe idea is no exception. It was studied quite a bit back in the 1990s as a way to deal with the problem of matter-antimatter symmetry. We can create matter particles in the lab, but when we do, we also create antimatter particles. They always come in pairs. So when particles formed in the early universe, where did all their antimatter siblings go? One idea was that the universe itself formed as a pair. Our matter universe and a similar antimatter universe. Problem solved. The idea fell out of favor for various reasons, but this new study looks at how it might solve the Hubble problem.

The team discovered an invariance in what are known as unitless parameters. The most famous of these is the fine structure constant, which has a value of about 1/137. Basically, you can combine measured parameters in such a way that all the units cancel out, giving you the same number no matter what units you use, which is great if you are a theoretician. The team found that when you tweak cosmological models to match the observed expansion rates, several unitless parameters stay the same, which suggests an underlying cosmic symmetry. If you impose this symmetry more broadly, you can scale the rate of gravitational free-fall and the photon-electron scattering rate so that the different methods of Hubble measurement better agree. And if this invariance is real, it implies the existence of a mirror universe. One that would affect our universe through a faint gravitational pull.

It should be pointed out that this study is mostly a proof of concept. It lays out how this cosmic invariance might solve the Hubble constant problem, but doesn’t go so far as to prove it’s a solution. A more detailed model will be needed for that. But it’s an interesting idea. And it’s good to know that if your evil doppelganger is out there, they can only influence your life gravitationally…

Reference: Cyr-Racine, Francis-Yan, Fei Ge, and Lloyd Knox. “Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant.” Physical Review Letters 128.20 (2022): 201301.

The post Does a “Mirror World of Particles” Explain the Crisis in Cosmology? appeared first on Universe Today.

Did you miss our previous article…
https://www.mansbrand.com/see-all-naked-eye-planets-this-month-in-order/

Continue Reading
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Frontier Adventure

Electrodes in Spacesuits Could Protect Astronauts from Harmful Dust on Mars

apollo 17 dust jpg

To quote NASA associate administrator Jim Reuter, sending crewed missions to Mars by 2040 is an “audacious goal.” The challenges include the distance involved, which can take up to six months to traverse using conventional propulsion methods. Then there’s the hazard posed by radiation, which includes increased exposure to solar particles, flares, and galactic cosmic rays (GCRs). And then there’s the time the crews will spend in microgravity during transits, which can take a serious toll on human health, physiology, and psychology.

But what about the challenges of living and working on Mars for several months at a time? While elevated radiation and lower gravity are a concern, so is Martian regolith. Like lunar regolith, dust on Mars will adhere to astronauts’ spacesuits and inflict wear on their equipment. However, it also contains harmful particles that must be removed to prevent contaminating habitats. In a recent study, a team of aerospace engineers tested a new electrostatic system for removing Martian regolith from spacesuits that could potentially remove harmful dust with up to 98% efficiency.

The new system was designed by Benjamin M. Griggs and Lucinda Berthoud, a Master’s engineering student and Professor of Space Systems Engineering (respectively) with the Department of Aerospace Engineering at the University of Bristol, UK. The paper that describes the system and the verification process recently appeared in the journal Acta Astronautica. As they explain, the Electrostatic Removal System (ERS) they propose utilizes the phenomenon of dielectrophoresis (DEP) to remove Martian dust from spacesuit fabrics.

apollo 17 dust 1 jpg
Dust flies from the tires of a moon buggy, driven by Apollo 17 astronaut Gene Cernan. These “rooster-tails” of dust caused problems. Credit: NASA

Much like its lunar counterpart, Martian regolith is expected to be electrostatically charged due to exposure to cosmic radiation. But on Mars, there’s also the contribution made by dust devils and storms, which have been known to generate electrostatic discharges (aka. lightning). During the Apollo missions, astronauts reported how the lunar regolith would adhere to their suits and get tracked back into their Lunar Modules. Once inside, it would similarly stick to everything and get into their eyes and lungs, causing irritation and respiratory problems.

Given their plans to return astronauts to the Moon through the Artemis Program, NASA is investigating several methods to prevent regolith from getting into habitation modules – like coating technology for spacesuits and electron beams for cleaning them. While Martian dust is expected to inflict similar wear on spacesuits, the situation is made worse because it may contain toxic particles. As Griggs explained to Universe Today via email:

“Beyond having an abrasive effect on spacesuits themselves, Martian regolith is also expected to present health issues to astronauts. It is known to contain a range of harmful particles which may be carcinogenic or cause respiratory issues, and data from the Pathfinder mission showed the presence of toxic particles such as chromium. Martian regolith will therefore require removal from spacesuits prior to entry into habitation zones on Mars to prevent contact between astronauts and regolith particles.”

The principle behind the device, dielectrophoresis (DEP), refers to the movement of neutral particles when subjected to a nonuniform electric field. Their proposed Electrostatic Removal System (ERS) comprises two components: a High Voltage Waveform Generator (HVWG) used to produce square waves of varying frequencies and amplitudes up to 1000 volts and an Electrostatic Removal Device (ERD) consisting of an array of parallel copper electrodes. When the square waves are applied across the electrodes in the ERD, a large and varying electric field is generated. As Griggs summarized:

“Therefore, when dust particles are incident on the surface of the ERD, the dust particles are displaced through a combination of electrostatic and dielectrophoretic forces (due to the large electric field), which acts on charged and uncharged particles respectively within the dust. This acts to displace dust particles in a direction perpendicular to the electrodes, resulting in the clearing of the ERD surface.”

2b7749a383Did you miss our previous article…
https://mansbrand.com/if-exoplanets-have-lightning-itll-complicate-the-search-for-life/

Continue Reading

Frontier Adventure

If Exoplanets Have Lightning, it’ll Complicate the Search for Life

TRAPPIST 1d artist impression 2018 jpg

Discovering exoplanets is almost routine now. We’ve found over 5,500 exoplanets, and the next step is to study their atmospheres and look for biosignatures. The James Webb Space Telescope is leading the way in that effort. But in some exoplanet atmospheres, lightning could make the JWST’s job more difficult by obscuring some potential biosignatures while amplifying others.

Detecting biosignatures in the atmospheres of distant planets is fraught with difficulties. They don’t advertise their presence, and the signals we receive from exoplanet atmospheres are complicated. New research adds another complication to the effort. It says that lightning can mask the presence of things like ozone, an indication that complex life could exist on a planet. It can also amplify the presence of compounds like methane, which is considered to be a promising biosignature.

The new research is “The effect of lightning on the atmospheric chemistry of exoplanets and potential biosignatures,” and it’s been accepted for publication in the journal Astronomy and Astrophysics. The lead author is Patrick Barth, a researcher from the Space Research Institute at the Austrian Academy of Sciences.

While we’ve discovered over 5,500 exoplanets, only 69 of them are in the potentially habitable zones around their stars. They’re rocky planets that receive enough energy from their stars to potentially maintain liquid water on their surfaces. Our search for biosignatures is focused on this small number of planets.

This is an artist's illustration of the exoplanet TRAPPIST-1d, a potentially habitable exoplanet about 40 light-years away. Planets like these are prime targets for JWST's spectrometry. Image Credit: By NASA/JPL-Caltech - Cropped from: PIA22093: TRAPPIST-1 Planet Lineup - Updated Feb. 2018, Public Domain, https://commons.wikimedia.org/w/index.php?curid=76364484
This is an artist’s illustration of the exoplanet TRAPPIST-1d, a potentially habitable exoplanet about 40 light-years away. Planets like these are prime targets for JWST’s spectrometry. Image Credit: By NASA/JPL-Caltech – Cropped from: PIA22093: TRAPPIST-1 Planet Lineup – Updated Feb. 2018, Public Domain, https://commons.wikimedia.org/w/index.php?curid=76364484

The important next step is to determine if these planets have atmospheres and then what the composition of those atmospheres is. The JWST is our most powerful instrument for these purposes. But in order to understand what the JWST shows us in distant atmospheres, we have to know what its signals tell us. Research like this helps scientists prepare for the JWST’s observations by alerting them to potential false positives and masked biosignatures.

This JWST spectra isn't part of this research, but it shows how the powerful space telescope can examine exoplanet atmospheres. It's a transmission spectrum of the hot gas giant exoplanet WASP-39 b, captured by Webb's Near-Infrared Spectrograph (NIRSpec.) It reveals the first definitive evidence of carbon dioxide in the atmosphere of a planet outside the Solar System. In the future, the JWST will bring its observation power to bear on more exoplanets as part of the search for biosignatures. Image Credit: NASA, ESA, CSA, and L. Hustak (STScI). Science: The JWST Transiting Exoplanet Community Early Release Science Team
This JWST spectra isn’t part of this research, but it shows how the powerful space telescope can
Did you miss our previous article…
https://mansbrand.com/titan-probably-doesnt-have-the-amino-acids-needed-for-life-to-emerge/

Continue Reading

Frontier Adventure

Titan Probably Doesn’t Have the Amino Acids Needed for Life to Emerge

Possible liquid ocean beneath Titan s surface pillars 750 jpg

Does Saturn’s largest moon, Titan, possess the necessary ingredients for life to exist? This is what a recent study published in Astrobiology hopes to address as a team of international researchers led by Western University investigated if Titan, with its lakes of liquid methane and ethane, could possess the necessary organic materials, such as amino acids, that could be used to produce life on the small moon. This study holds the potential to help researchers and the public better understand the geochemical and biological processes necessary for life to emerge throughout the cosmos.

Along with its liquid lakes of methane and ethane, Titan is also strongly hypothesized to possess a subsurface liquid water ocean like Saturn’s icy moon, Enceladus, and Jupiter’s icy moon, Europa. For the study, the researchers used data from impact cratering from comets to estimate the number of organic molecules that could relocate from Titan’s surface to its subsurface liquid water ocean. The team hypothesized that when comets strike Titan’s surface, their icy materials would melt from the heat of the impact and mix with the surface organics, resulting in a unique mixture. However, the heavier liquid water would then sink to the subsurface, slowly filling the subsurface ocean over time.

Possible liquid ocean beneath Titan s surface pillars 750 1 jpg
Artist’s cutaway illustration displaying Titan’s subsurface ocean (blue). (Credit: NASA/JPL)

After accounting for a presumed annual number of cometary impacts on Titan’s surface throughout its billions of years of existence, the researchers then calculated how much water would make its way from the surface to the subsurface ocean. In the end, the team concluded that the amount of glycine, which is the most basic amino acid that forms the proteins to create life, was measured at no greater than 7,500 kilograms/year (16,530 pounds/year). This amount approximately equals the size of a smaller African forest elephant, hence indicating number of organic materials that exist on Titan is quite miniscule.

“One elephant per year of glycine into an ocean 12 times the volume of Earth’s oceans is not sufficient to sustain life,” said Dr. Catherine Neish, who is an associate professor in the Department of Earth Sciences at Western University and lead author of the study. “In the past, people often assumed that water equals life, but they neglected the fact that life needs other elements, in particular carbon.”

While Dr. Neish’s study presents somewhat dire implications for finding life on Titan, this study comes on the heels of a recent investigation into how organic hazes on ancient Earth could have contained the necessary building blocks of life, including nucleobases and amino acids, which could hold implications for finding life on Titan due to the moon’s hazy atmosphere. For this study, the researchers used laboratory experiments to determine that “warm little ponds” on ancient Earth could host nucleobases. Both studies offer profound insights into the processes responsible for both creating and sustaining life beyond Earth, and further research is undoubtedly required to better understand these processes.

One such research opportunity that could help solidify these studies could be NASA’s upcoming Dragonfly mission, which is a quadcopter designed to search Titan’s surface for signs of potential habitability with Dr. Neish assigned as a mission co-investigator. Dragonfly currently has a scheduled launch date of July 2028, arriving at Saturn’s largest moon sometime in 2034. While Dragonfly will not be the first aircraft on another world, as that honor goes to NASA’s Ingenuity Mars Helicopter, it will be the first aircraft to land and operate in the outer solar system. Dragonfly will launch more than 20 years after the European Space Agency’s Huygens probe landed on Titan in January 2005, beaming back images of rounded rocks that could have formed from liquid processes.

What new discoveries will scientists make about Titan and its potential for life in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Titan Probably Doesn’t Have the Amino Acids Needed for Life to Emerge appeared first on Universe Today
Did you miss our previous article…
https://mansbrand.com/astronomers-discover-a-new-meteor-shower-the-source-is-comet-46p-wirtanen/

Continue Reading

Trending