Connect with us

There’s always a need for new technologies or for novel uses of existing technologies to lower the cost of space exploration and extend our reach. Lightsails are a novel type of spacecraft that could eventually be our first visitors to nearby stars like the Alpha Centauri system. But they could be put to productive use right here in our Solar System.

Lightsail technology is not exactly new. The Planetary Society proved that the technology is feasible as propulsion for small satellites when they relied on sunlight alone to change the orbit of their LightSail 2 spacecraft in 2022. Japan’s IKAROS 3 spacecraft successfully demonstrated lightsail technology on an interplanetary spacecraft when it flew by Venus in 2010.

Those missions were relatively modest, but they provided critical proof that lightsail technology can work.

These missions relied purely on sunlight for their energy. That can restrict their use to inner solar systems, where sunlight is abundant. But some engineers think we can augment the Sun’s energy with powerful lasers aimed at lightsails. With that additional directed energy, lightsails could travel further into the Solar System.

A new paper shows how lightsails could be used to visit the icy moons Europa and Enceladus, two prime targets in the search for life. The paper is “A Light Sail Astrobiology Precursor Mission to Enceladus.” It’s in its pre-print stage and hasn’t been peer-reviewed yet. The authors are Manasvi Lingam from the Florida Institute of Technology, Adam Hibberd from the University of Texas, and Andreas Hein from the Institute for Interstellar Studies and the University of Luxembourg.

Jupiter's second Galilean moon, Europa. What's under all that ice? (Credit: NASA/JPL/Galileo spacecraft)
Jupiter’s second Galilean moon, Europa. What’s under all that ice? (Credit: NASA/JPL/Galileo spacecraft)

“Icy moons with subsurface oceans of liquid water rank among the most promising astrobiological
targets in our Solar System,” the authors write. “In this work, we assess the feasibility of deploying laser sail technology in lieu of conventional chemical propulsion to instantiate precursor life-detection missions.”

Note the word precursor. That word is aimed at the limitations of lightsail spacecraft. Most importantly, they’re unable to decelerate like spacecraft with other types of propulsion systems. But lightsail spacecraft are simpler and less expensive than other spacecraft designs. How can they fit into our exploration of these important Solar System bodies, where life might find refuge in warm, salty oceans buried under kilometres of ice?

Lightsail spacecraft may struggle to decelerate, but they can control their attitude, as Japan’s IKAROS spacecraft demonstrated. It used LCDs with controllable reflectivity to alter its attitude and trajectory. So while a lightsail can’t enter orbit around moons like Europa and Enceladus, they could perform flybys. That’s why the authors call them “precursor” missions.

The researchers have their eye on the plumes that come from the buried oceans on both moons. Sampling the chemistry of both of those plumes would be a huge step forward in understanding their potential habitability. “We principally investigate such laser sail missions to Enceladus and Europa, as these two moons emit plumes that seem accessible to in situ sampling,” they write.

What they’re proposing are more correctly called laser sails because it’s powerful lasers that make them feasible. They point to the potential of GigaWatt Lasers, a technology being researched and developed but still out of reach. With powerful lasers like these, the authors say a laser sail spacecraft could reach Europa in 1 to 4 years of travel and Enceladus in 3 to 6 years of travel. These numbers are for a 100 kg (220 lb) spacecraft travelling at about 30 km s?1.

But GigaWatt lasers are no ordinary lasers. These are super-villain-scale machines that could burn down a city if one were aimed at Earth. Not only that, but they may have to be built in the Arctic or Antarctic for a mission to Enceladus. The implications of building powerful energy infrastructure in
Did you miss our previous article…
https://mansbrand.com/the-big-bang-what-is-it-why-study-it-what-happened-before-how-will-it-all-end/

Continue Reading

Frontier Adventure

An Astronaut Might Need Kidney Dialysis on the Way Home from Mars

iss040e006105 gerst ared 1024x680 1

Long term space exploration comes with many challenges. Not least is how much toilet paper to take but more worryingly is the impact on human physiology. We have not evolved in a weightless environment, we are not used to floating around for months on end nor are we able to cope with increased levels of radiation. It is likely that organs like the kidneys will become damaged but it make take time for signs to appear. Researchers are developing ways to detect organ issues in the early stages and develop ways to protect them during long duration flights. 

We have known for some years that space flight causes health problems. Reduced muscle and bone density are the more well known but since the 1970’s we have also seen a weakening of the heart, eyesight issues and kidney stone development. The main cause of the problem is thought to be increased exposure to radiation from space. It’s not just the radiation from the Sun but Galactic Cosmic Radiation from deep space also plays a part. Fortunately for us here on Earth, the magnetic field protects us and those in low Earth orbit to a degree too. Those who travel further afield; to the Moon and other planets will be far more at risk. 

iss040e006105 gerst ared 1024x680 2
ESA astronaut Alexander Gerst gets a workout on the Advanced Resistive Exercise Device (ARED). Credit: NASA

To date, no-one has attempted to study what might be happening inside our organs as a result of long duration space flight, until now. A new study, published in Nature Communications, reports upon the analysis of kidney health in space flight. The study was funded by Wellcome, St Peters Trust and Kidney Research UK and was undertaken by a team of researchers from over 40 groups.

The research team collected samples from over 40 low Earth orbit missions from humans and mice chiefly from the International Space Station. Using these samples they conducted biomolecular, physiological and anatomical assessments. Using mice, they were able to simulate Galactic Cosmic Radiation doses equivalent to a 1.5 year to 2.5 year Mars mission. 

MDS Facility4 1024x692 1
NASA Image: ISS020E049908 – NASA astronaut Nicole Stott, Expedition 20/21 flight engineer, is pictured near the Mice Drawer System (MDS) in the Kibo laboratory of the International Space Station.

Indications from the study showed that the kidney from both animal and human experienced changes. Parts of the kidney, known as tubules, are responsible for tweaking the calcium and salt balances and these showed signs of shrinkage after less than a month in space. The researchers believe though that this is more likely the result of weightlessness rather than radiation doses. The team did suggest however that further research is appropriate to see if the combination of increased doses of radiation coupled with microgravity had an increasing effect.

Another finding of the study was the way in which salt is processed by the kidneys. It is now thought that fundamental changes to how this is handled leads to the formation of kidney stones whilst it was originally assumed to be the result solely of microgravity.

Perhaps the most shocking finding of the study though was that anyone venturing beyond the confines fo the Earth’s protective magnetic field for 2.5 years is likely to experience permanent kidney damage and loss of function. This was demonstrated in the mice samples that had experienced a simulated Galactic Cosmic Radiation dose

Continue Reading

Frontier Adventure

Moon Lander Detects Technosignatures Coming from Earth

armstong and aldrin e1435608412815

The search for life has to be one of the most talked about questions in science. The question is, what do you look for? The Odysseus lunar lander has recently detected signs of a technologically advanced civilisation…on Earth! The lander is equipped with an instrument called ROLSES which has probed the radio emissions from Earth as if it was an exoplanet to se if it could detect signs of life! 

Odysseus was launched on 15 February, it was the Intuitive Machines lunar lander and it touched down in the solar polar region of the Moon seven days later. Since then it has been collecting valuable data from the area as a prelude for future human exploration. It was part of the Commercial Lunar Payload Services program which have all been built by private companies. Despite the hiccup of a landing where Odysseus tipped onto its side it has still been performing well.

There have been other challenges along the way. The laser guided navigation system which was supposed to aid the landing over the rocky surface failed. In a nod to Armstrong landing Apollo 11 manually in the last few minutes, the ground crew had to land using the optical camera system alone.  Even the journey to the Moon was not without incident. One of the antennae of the ROLSES system overheated and became dislodged from its housing.  On landing, an image showed the antenna sticking out. 

armstong and aldrin e1435608412815 1
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

On board Odysseus is the Radio wave Observations at the Lunar Surface of the photo Electron Sheath or ROLSES for short. It is a radio experiment designed to explore properties of the Earth’s atmosphere from the surface of the Moon. It was a unique opportunity to observe Earth in a completely different way and, to see if our approach for hunting for technologically capable alien civilisations are correct.

The instrument was built at NASA’s Goddard Space Flight Center in Maryland and included radio antennae and a device called a radio spectrometer. It’s purpose was to record a wide range of radio emissions from the ‘radio quiet’ locale of the Moon. It turned out to be a bit of a bonus though as the team were able to record radio waves coming from Earth for about an hour and a half. 

1280px NASA Selects First Commercial Moon Landing Services for Artemis Program 47974872533 1024x682 1
NASA has selected three commercial Moon landing service providers that will deliver science and technology payloads under Commercial Lunar Payload Services (CLPS) as part of the Artemis program. Each commercial lander will carry NASA-provided payloads that will conduct science investigations and demonstrate advanced technologies on the lunar surface, paving the way for NASA astronauts to land on the lunar surface by 2024…The selections are:..• Astrobotic of Pittsburgh has been awarded $79.5 million and has proposed to fly as many as 14 payloads to Lacus Mortis, a large crater on the near side of the Moon, by July 2021…• Intuitive Machines of Houston has been awarded $77 million. The company has proposed to fly as many as five payloads to Oceanus Procellarum, a scientifically intriguing dark spot on the Moon, by July 2021…• Orbit Beyond of Edison,
Did you miss our previous article…
https://mansbrand.com/the-inner-and-outer-milky-way-arent-the-same-thickness-and-thats-surprising/

Continue Reading

Frontier Adventure

The Inner and Outer Milky Way Aren’t the Same Thickness, and that’s Surprising

smithcloud nrao 1024x754 1

At first glance, the universe and night sky seem largely unchanging. The reality is very different, even now, a gas cloud is charging toward the Milky Way Galaxy and is expected to crash into us in 27 million years. A team of astronomers hoping to locate the exact position of the expected impact site have been unsuccessful but have accidentally measured the thickness of the Milky Way! Analysing radio data, they have been able to deduce the thickness of the inner and outer regions and discovered a dramatic difference between the two. 

The team of astronomers from the US National Science Foundation’s Green Bank Observatory were attempting to study the Smith Cloud. This high velocity cloud of hydrogen gas is located in the constellation Aquila at a distance of somewhere between 36,000 and 45,000 light years. Previous studies from the Green Bank Observatory have shown the cloud contains at least 1 million times the mass of the Sun and measures 9,800 light years long by 3,300 light years wide. 

smithcloud nrao 1024x754 2
A false-color image of the Smith Cloud made with data from the Green Bank Telescope (GBT). New analysis indicates that it is wrapped in a dark matter halo. Credit: NRAO/AUI/NSF

The plan was simple enough, to observe the spot where the cloud is currently interacting with the Milky Way. The observation is tricky enough though as the cloud is on the far side of the Milky Way and there is a lot of stuff in the way! The team, led by Toney Minter used the 20m Green Bank Telescope to search for dust and emissions from hydroxyl molecules (composed of a hydrogen and oxygen molecule.)  What the team expected to see was a difference in composition in the region of the Milky Way interacted with the cloud which, should have very little dust and hydroxyl molecules. Clouds in the Milky Way tend to have both so a difference should be detectable. 

credit Jay Young 1024x682 1
The Robert C. Byrd Green Bank Telescope. Credit: Jay Young.

Minter was candidly open about the study joking ‘I knew there was a low probability that I’d find what I was looking for—and I didn’t,. But this is all part of the scientific process. You learn from what you DO and DON’T find.’

Disappointingly the team did not detect any differences in composition but what they did find was equally as interesting. The study revealed information about the Milky Way itself and the structure of its inner regions. Minter and his team had to look through the Milky Way’s inner regions for their study and what they were able to determine was the thickness of the layer of molecules in the inner Galaxy. The information enabled them to deduce the scale height of the clouds of molecular gas in the inner Milky Way. The results showed that the layer of molecules in the inner region measured 330 light years thick while those in the outer parts measured twice as much, around 660 light years.

The discovery still leaves questions unanswered. The observation certainly shows the difference in thickness between the inner and outer regions but it doesn’t give any clue as to what is driving the difference. Further observations are now required to follow up on this discovery to try and model the underlying process. Of course one other question remains unanswered and that is the nature and mechanics of the Smith Cloud and how it will impact our own Galaxy. Far from being disappointed though, Minter stated ‘That’s why astronomy is exciting, our knowledge is always evolving’

Source : While Aiming for
Did you miss our previous article…
https://mansbrand.com/catching-comet-13p-olbers-this-summer/

Continue Reading

Trending