Connect with us

It appears that rogue planets – free floating worlds that aren’t gravitationally bound to a parent star – might be more common than we thought. New data from the James Webb Space Telescope have revealed 540 (yes, that’s right) planetary-mass objects in the Orion Nebula and Trapezium Cluster.

If confirmed, this would be by far the largest sample of rogue planets ever discovered.

Last year, astronomers found 70 free floating worlds throughout the Milky Way.

Astronomers Samuel Pearson and Mark McCaughrean of the European Space Agency made the observations and posted a preprint paper to arXiv. The paper has yet to be peer reviewed, but has been submitted to Nature.

The researchers say a near-infrared survey from JWST allowed them to discover and characterize this large sample of 540 planetary-mass candidates. The team says these planetary mass objects (PMOs) are too small to be stars, as their masses are well below the traditional cutoff for a deuterium-burning brown dwarf, even down to 0.6 Jupiter mass — not much more massive than Saturn.

Within the large group of rogue planets are 42 pairs of planets that are gravitationally bound together, something that’s never been observed before. The astronomers named them Jupiter Mass Binary Objects, or JuMBOs.

470386main p1019a1 1024x819 2
Graphic of a rogue star being kicked out of a galaxy. Credit: NASA, ESA, and G. Bacon (STScI)

“How pairs of young planets can be ejected simultaneously and remain bound, albeit weakly at relatively wide separations, remains quite unclear,” the researchers wrote in their paper.

“The Jupiter Mass Binary Objects or JuMBOs are a really big discovery, we believe,” said McCaughrean, a senior adviser for science and exploration at ESA, on Mastodon. In the pre-print, researchers said that these planetary-mass binary objects is “a result that is highly unexpected and which challenges current theories of both star and planet formation.”

The conventional definition of a planet is that it is in orbit around a star. Additionally, current theories of planetary formation suggest that Jupiter-sized objects can only be formed through the process that gives rise to stars inside the clouds of dust and gas found in a nebula.

“It is clear that further simulations and modelling will be needed to understand how a substantial population of objects can form below [5 Jupter masses] and how a significant fraction of them can end up in multiple systems,” the team concluded.

The exact mechanisms for how planets go “rogue” are unknown, but several theories exist. The theories include that planets are pulled away from one star by gravitational interactions with other passing stars, or that supernovae kick them out, or that they free float into space after their sun dies.

Alternatively, for the JuMBOs, the researchers speculate that planetary ejections can be caused through planets scattering in a planetary disk or by dynamical interactions between stars.

“The latter are relatively common in dense star-forming regions like the Trapezium Cluster,” the team wrote. “The ensemble of planetary mass objects and JuMBOs that we see in the Trapezium Cluster might arise from a mix of both of these “classical” scenarios, even if both have significant caveats, or perhaps a new, quite separate formation mechanism, such as a fragmentation of a star-less disk, is required.”

Rogue planets are usually impossible to image in visible light, which makes JWST’s sensitive infrared vision the perfect tool to look for them.

Orion Nebula in NIRCam short wavelength channel pillarsDid you miss our previous article…
https://mansbrand.com/watch-osiris-rex-release-its-sample-capsule/

Continue Reading

Frontier Adventure

Iran Sent a Capsule Capable of Holding Animals into Orbit.

Ham the chimp cropped 575x1024 1

Despite popular opinion, the first animals in space were not dogs or chimps, they were fruit flies launched by the United States in February 1947. The Soviet Union launched Laika, the first dog into space in November 1957 and now, it seems Iran is getting in on the act. A 500kg capsule known as the “indigenous bio-capsule” with life support capability was recently launched atop the Iranian “Salman” rocket. It has been reported by some agencies that there were animals on board but no official statement has been released.

The Iranian Space Agency (ISA) are gearing up to getting humans into space before 2029 but is testing its launch capability with animal passengers. The capsule was launched on December 6 2023 and attained an orbital altitude of 130 kilometres. According to their Telecommunications Minister Isa Zarepour, it is aimed at sending Iranian astronauts to space by 2029.

The “Salaman” solid-fuelled rocket was designed by the aerospace division of the Ministry of Science, Research and Technology and built and launched by the Ministry of Defence and Armed Forces Logistics. It has already been used to launch a data collecting satellite and in 2013 successfully sent and returned monkeys into space.

Ham the chimp cropped 575x1024 2
Ham, a chimpanzee, became the first great ape in space during his January 31, 1961, suborbital flight aboard Mercury-Redstone 2 (Credit : NASA)

To date, only three counties have human spaceflight capability; USA, Russia and China. India are attempting to become the fourth as they work on their Gaganyaan program. Will Iran become the fifth!? Iran plans further tests with further launches bearing animal occupants before attempting to send humans up.

According to the Iranian Space Agency, its satellite program is purely for scientific research and other civilian applications. There is however, international suspicion because there are suspicions that the Salamn rockets could very easily be converted to long range missiles.

Source : Iran says it sent a capsule capable of carrying animals into orbit as it prepares for human missions

The post Iran Sent a Capsule Capable of Holding Animals into Orbit. appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/what-could-a-next-generation-event-horizon-telescope-do/

Continue Reading

Frontier Adventure

What Could a Next Generation Event Horizon Telescope Do?

sagasize 1024x598 1 jpg

Telescopes have come a long way in a little over four hundred years! It was 1608 that Dutch spectacle maker Hans Lippershey who was said to be working with a case of myopia and, in working with lenses discovered the magnifying powers if arranged in certain configurations. Now, centuries on and we have many different telescope designs and even telescopes in orbit but none are more incredible than the Event Horizon Telescope (EHT). Images las year revealed the supermassive black hole at the centre of our Galaxy and around M87 but now a team of astronomers have explored the potential of an even more powerful system the Next Generation EHT (ngEHT).

There is no doubt that our understanding of the processes within our Universe have come on leaps and bounds since the invention of the telescope. The resolution of these space piercing instruments is dictated by the telescope’s aperture. The technique known as interferometry hooks individual telescopes together and combines their signal so they act as one BIG telescope, boosting the resolution. 

Telescopes like the EHT have been using interferometry to great advantage to study black holes. These enigmatic and mysterious stellar corpses defy our probing; we do not fully understand their origins and processes and indeed our laws of physics break down if you get too close to the point source in the centre, the singularity. Due to their interaction with space and time, understanding the full nature of black holes will – hopefully – unlock our understanding of the Universe. 

Previously, observations have only revealed the movement of stars around galactic centre suggesting an object was lurking there weighing in at around 4 million times the mass of the Sun. Data from the EHT collected during 2022, finally revealed an image of the object at the centre – SgrA* – a super massive black hole and the matter in the immediate vicinity of the event horizon. Whilst this image did not reveal the black hole itself – another article required to explain that – it certainly revealed the telltale signs. 

sagasize 1024x598 2 jpg
Sag A* compared to M87* and the orbit of Mercury. Credit: EHT collaboration

A recently published paper explores the possibilities of the ngEHT and how they might be able to unpick some of the physics around black holes. The ngEHT will increase the geographical footprint of EHT by 10 further instruments that span across the Earth.  Making use of the significant improvement in resolution, the ngEHT will also improve image dynamics range, provide a multi-wavelength capability and facilitate long term monitoring. 

The team conclude that future enhancements in measurement sensitivity and data analysis techniques in ngEHT will substantially advance our understanding of black holes and the immediate environments surrounding them with particular focus on the photon ring, mass and spin analysis, binary supermassive black holes and more besides.

Source : Fundamental Physics Opportunities with the Next-Generation Event Horizon Telescope

The post What Could a Next Generation Event Horizon Telescope Do? appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/dj-vu-all-over-again-backpacking-in-glacier-national-park/

Continue Reading

Frontier Adventure

Déjà vu All Over Again: Backpacking in Glacier National Park

By Michael Lanza

In the second week of September, the cool air in the shade of the forest nips at our cheeks as we leave our first night’s camp beside Glenns Lake in the backcountry of Glacier National Park, starting at a reasonably early hour for a day where we will walk nearly 16 miles and 6,000 feet of combined uphill and downhill. I’m hiking in a fleece hoodie, pants, and gloves and my friends Pam Solon and Jeff Wilhelm are similarly layered up. Once the sun reaches us within an hour, we’ll strip down to shorts and T-shirts.

Where the trail crosses a meadow, the expansive view west across a calm and insistently blue Cosley Lake reveals what looks like a long wall of overlapping stone shields jammed into the earth, each 2,000 or more feet tall and tilting at different angles. At the lake’s outlet—now in warm sunshine—we ford the Belly River, ankle- to calf-deep here with just a few tiny riffles and not very cold. More hiking through quiet forest brings us to the refrigerated, cliff-shaded alcove below Dawn Mist Falls, which spills thunderously over a sheer drop and crashes onto fallen boulders at its base, its force releasing a perpetual mist. Moss wallpapers the alcove’s short cliffs.

A backpacker hiking the Ptarmigan Tunnel Trail in Glacier National Park.
” data-image-caption=”Pam Solon backpacking the Ptarmigan Tunnel Trail in Glacier National Park.
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?resize=900%2C600&ssl=1″ alt=”A backpacker hiking the Ptarmigan Tunnel Trail in Glacier National Park.” class=”wp-image-61144″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?resize=1024%2C683&ssl=1 1024w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?resize=300%2C200&ssl=1 300w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?resize=768%2C512&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?resize=150%2C100&ssl=1 150w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/12/Gla7-35-Pam-Solon-backpacking-the-Ptarmigan-Tunnel-Trail-in-Glacier-National-Park.jpg?w=1200&ssl=1 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />Pam Solon backpacking the Ptarmigan Tunnel Trail in Glacier National Park.

After a thoroughly relaxing lunch break on the pebbly beach at Elizabeth Lake—where the perfect combination of solar warmth and soft breeze probably converts in direct value to about a thousand hours of counseling—we start the long climb to the Ptarmigan Tunnel. Reaching the open alpine terrain, I repeatedly stop to spin 180 degrees and take big bites of our view of the valley of Helen and Elizabeth lakes and the peaks on the other side, which shelter what remains of a couple of glaciers in the shade of north-facing cliffs just below the mountaintops.

I’ve backpacked this trail before; this isn’t new to me. But time slowly renders a bit fuzzier the memory of how constantly breathtaking it is—which is, in a funny way, a gift to us: We get to experience that awe anew each time.

Everyone laughed when the legendary Yogi Berra said, “It’s like déjà vu all over again,” but I think I knew what he meant.

https://mansbrand.com/fly-slowly-through-enceladus-plumes-to-detect-life/

Continue Reading

Trending