Connect with us

For decades, climate researchers and Earth scientists have used cores from ice sheets in the Arctic and Antarctic to better understand Earth’s climate history. Given how sensitive our atmosphere and climate are to the Sun, these ice cores are also a record of Solar activity. In a recent analysis of ice cores from Greenland and Antarctica, a research team led by Lund University in Sweden found evidence of an extreme solar storm that occurred about 9,200 years ago – when solar activity was believed to be one of the Sun’s more “quiet” phases.

The team consisted of researchers from Lund’s Department of Geology & Quaternary Sciences, the Alfred Wegener Institute (AWI) for Polar and Marine Research, the Laboratory of Ion Beam Physics at ETH Zürich, and the Ice Dynamics and Paleoclimate team (part of the British Antarctic Survey) at Cambridge University. Their results appeared in a paper that was recently published by Nature Communications.

The Sun is absolutely essential for most life on Earth and the processes that ensure continued habitability. However, there is a flip side to this relationship, which comes in the form of the “Sunspot Cycle,” an 11-year period where the number and location of sunspots on the surface rises and falls. During periods of peak sunspot activity (a “solar maximum”), the Sun’s surface becomes more energetic, resulting in increased solar wind and the occasional solar flare.

When these reach Earth’s atmosphere, it can lead to geomagnetic storms (or solar sotmrs) that have a serious impact on Earth’s infrastructure – like power outages and communication disturbances. By developing predictive models that could anticipate solar activity (and solar storms), advanced warning systems could be created that would let us prepare for the ensuing disruption. But predicting solar storms is not an easy task.

It is currently believed that solar storms are more likely during an active phase of the Sun (solar maximum). However, according to the study led by Lund University researchers, this may not always be the case for particularly large storms. While analyzing ice cores from Greenland and Antarctica, the team found peaks of radioactive isotopes – beryllium-10 and chlorine-36 – which are produced by high-energy cosmic particles associated with solar storms.

This was a surprising find since the event that created these isotopes occurred roughly 9125 years before the present day (ca. 7176 BCE). This coincides with the “Neolithic Period,” a historic era where humanity was making the transition from hunting and gathering to agriculture and sedentary living. At this time, it is believed that Earth was less exposed to such energetic events. As co-author Raimund Muscheler, a geology researcher at Lund University, said:

“We have studied drill cores from Greenland and Antarctica, and discovered traces of a massive solar storm that hit Earth during one of the sun’s passive phases about 9,200 years ago. This is time-consuming and expensive analytical work. Therefore, we were pleasantly surprised when we found such a peak, indicating a hitherto unknown giant solar storm in connection with low solar activity.”

Borrkarnor till utskick 1
Analyzing ice cores led the researchers to their surprising results. Credit: Raimund Muscheler

The implications of this find could be immensely significant when it comes to mitigating the danger posed by solar storms. If a storm of the same magnitude were to happen today, it would have devastating consequences for Earth and space exploration efforts. In addition to triggering power outages all over the planet, disabling communications, and endangering air traffic control, it would damage satellites and make it very difficult to communicate with astronauts or long-range missions.

Knowing how and when they can occur (regardless of the solar spot cycle) is essential to ensuring that people and infrastructure (whether it’s here on Earth or in space) remain safe and sound. “These enormous storms are currently not sufficiently included in risk assessments,” Muscheler added. “It is of the utmost importance to analyze what these events could mean for today’s technology and how we can protect ourselves.”

Further Reading:Lund University, Nature Communication

The post
Did you miss our previous article…
https://www.mansbrand.com/there-are-places-where-salty-water-could-emerge-onto-the-surface-of-mars/

Continue Reading
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Frontier Adventure

The 12 Best Dayhikes in Yosemite

Tet19 047 Me on Teton Crest Trail copy cropped 38 jpg

By Michael Lanza

The natural beauty, variety, pristine quality, and scale of America’s National Park System have no parallel in the world. Still, a handful of flagship parks rise above the rest—including, unquestionably, Yosemite. Created in 1890, our third national park harbors some of the most breathtaking and inspiring wild lands in the entire parks system. And you can reach much of Yosemite’s finest scenery on dayhikes.

This story shares my picks for the 12 best dayhikes in Yosemite, from popular hikes like Half Dome, the Mist Trail, and Upper Yosemite Falls to some trails and peaks you may not have heard of—including the nearly 11,000-foot summit known to have “the best 360 in Yosemite.”

This list of Yosemite’s best hikes is drawn from my numerous trips dayhiking and backpacking all over the park going back more than 30 years, including the 10 years I spent as a field editor for Backpacker magazine and even longer running this blog. Use this story as your guide and you will see the best scenery in Yosemite that’s accessible on a moderate to full day of hiking.

Please share your thoughts on any of these hikes or your own favorites in Yosemite in the comments section at the bottom of this story. I try to respond to all comments.

Tet19 047 Me on Teton Crest Trail copy cropped 39 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

May Lake in Yosemite National Park.
” data-image-caption=”May Lake in Yosemite National Park.
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?fit=300%2C199&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?fit=900%2C598&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?resize=900%2C598&ssl=1″ alt=”May Lake in Yosemite National Park.” class=”wp-image-38065″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?resize=1024%2C680&ssl=1 1024w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?resize=300%2C199&ssl=1 300w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?resize=768%2C510&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?resize=1080%2C717&ssl=1 1080w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/03/Yos12-077-May-Lake-Yosemite-N.P.-CA-copy.jpg?w=1200&ssl=1 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />May Lake in Yosemite National Park. Click photo for my e-guide “The Prettiest, Uncrowded Backpacking Trip in Yosemite.”

May Lake and Mount Hoffmann

2.4 to 6 miles, 500 to 2,100 feet up and down

From the 10,850-foot summit of Mount Hoffmann (lead photo at top of story) in the geographic center of Yosemite—often described as having “the best 360 in Yosemite”—you’ll look out over virtually the entire park, seeing Half Dome, Clouds Rest, and Yosemite Valley, the Clark and Cathedral Ranges, and the sea of peaks sprawling across northern Yosemite. The hike culminates with a steep, third-class scramble up the final 200 feet to the summit, where you stand at the brink of cliffs with serious exposure (although you don’t have to stand at that dizzying edge).

The summit of Yosemite’s Mount Hoffmann.
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2017/07/Yos12-073-Atop-Mt.-Hoffmann-Yosemite-NP-CA.jpg?fit=300%2C199&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside
Did you miss our previous article…
https://mansbrand.com/the-kuiper-belt-is-much-bigger-than-we-thought/

Continue Reading

Frontier Adventure

The Kuiper Belt is Much Bigger Than We Thought

Payload FULL jpg

NASA’s New Horizons spacecraft is just over 8.8 billion km away, exploring the Kuiper Belt. This icy belt surrounds the Sun but it seems to have a surprise up its sleeve. It was expected that New Horizons would be leaving the region by now but it seems that it has detected elevated levels of dust that are thought to be from micrometeorite impacts within the belt. It suggests perhaps that the Kuiper Belt may stretch further from the Sun than we thought! 

The Kuiper Belt is found beyond the orbit of Neptune and is thought to extend out to around 8 billion km. Its existence was first proposed in the mid-20th century by Gerard Kuiper after whom the belt has been named. It’s home to numerous icy bodies and dwarf planets and offers valuable insight into the formation and evolution of the Solar System.

Launched by NASA in January 2006 atop an Atlas V rocket, the New Horizon’s spacecraft embarked on its mission to explore the outer Solar System. The primary objective was to perform a close flyby of Pluto, which it did 9.5 years after it launched, and continue on to explore the Kuiper Belt.

New Horizons completed its flyby of Pluto in 2015, and has been travelling through the Kuiper Belt since. As it travels through the outer reachers of the region, almost 60 times the distance from Earth to the Sun, its Venetia Burney Student Dust Counter (SDC) has been counting dust levels. The instrument was constructed by students at the Laboratory for Atmospheric Space Physics at the University of Colorado Boulder. Throughout New Horizon’s journey, SDC has been monitoring dust levels giving fabulous insight into collision rates among objects in the outer Solar System. 

The New Horizons instrument payload that is currently doing planetary science, heliospheric measurements, and astrophysical observations. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The New Horizons instrument payload that is currently doing planetary science, heliospheric measurements, and astrophysical observations. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The dust particle detections announced in a recent paper published in the Astrophysical Journal Letters by lead author Alex Doner are thought to be frozen remains from collisions between larger Kuiper Belt Objects (KBOs). The results were a real surprise and challenged the existing models that predicted a decline in dust density and KBO population. It seems that the belt extends many billions of miles beyond the current estimates or maybe even that there is a second belt!

The results came from data gathered over a three year period during New Horizon’s journey from 45 to 55 astronomical units (where 1 astronomical unit is the average distance between the Sun and Earth). While New Horizon’s was gathering data about dust, observatories such as the 8.2-meter optical-infrared Subaru Telescope in Hawaii have been making discoveries of new KBOs. Together these findings suggest the Kuiper Belt objects and dust may well extend a further 30 AUs out to about 80 AUs from the Sun.

New Horizons is now in its extended mission and hopefully has sufficient power and propellant to continue well into the 2040s. At its current velocity that will take the spacecraft out to about 100 AU from the Sun so the research team speculate that the SDC could identify the transition point into interstellar space.

Source : NASA’s New Horizons Detects Dusty Hints of Extended Kuiper Belt

The post The Kuiper Belt is Much Bigger Than We Thought appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/a-planetary-disk-in-the-orion-nebula-is-destroying-and-replenishing-oceans-of-water-every-month/

Continue Reading

Frontier Adventure

A Planetary Disk in the Orion Nebula is Destroying and Replenishing Oceans of Water Every Month

DyGvigfWsAIzaxj 580x580 1 jpg

Planet-forming disks are places of chaotic activity. Not only do planetesimals slam together to form larger worlds, but it now appears that the process involves the destructive recycling of water within a disk. That’s the conclusion from scientists studying JWST data from a planetary birth crèche called d203-506 in the Orion Nebula.

The data they studied suggest that an amount of water equivalent to all of Earth’s oceans is created and replenished in a relatively short period—about a month. According to study co-lead Els Peeters at Western University in Canada, it was relatively easy to discover this process in the protoplanetary disk. “This discovery was based on a tiny fraction of our spectroscopic data,” she said. “It is exciting that we have so much more data to mine and I can’t wait to see what else we can find.”

The Orion Nebula is a vast active star- and planet-forming region and the d203-506 protoplanetary disk lies within it at a distance of about 1,350 light-years away from Earth. Astronomers study the nebula to understand all aspects of star birth since there are so many newborn stars there. In addition, many are surrounded by disks of gas and dust, called protoplanetary disks (proplyds, for short). Those regions are excellent places to observe planet-formation processes, and particularly the interplay between the young stars and their disks.

The Orion Nebula, one of the most studied objects in the sky. It's likely that many of its protostars and their planetary disks contain water in some form. Image: NASA
The Orion Nebula is one of the most studied objects in the sky. Many of its protostars and their planetary disks likely contain water in some form. Image: NASA

The Water Cycle of a Proplyd

We all know that water is an important ingredient for life. It certainly played a role in creating and sustaining life on our planet. As it turns out, water is a significant fraction of the materials in a proplyd. In the infant Solar System, water existed throughout our proplyd long before any of the planets formed, largely in their icy form, either as icy bodies or locked into asteroids and planetesimals. It also exists in interstellar space.

This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals.  Credit: NASA
This view of Earth’s horizon by an Expedition 7 crewmember onboard the International Space Station. A new study suggests that Earth’s water didn’t all come from comets, but likely also came from water-rich planetesimals. Credit: NASA

Most of Earth’s water got delivered to the forming planet over millions of years. It melted or outgassed to form the oceans, rivers, and lakes we see today. But, some fraction of the water in our system’s birth disk probably went through a “freeze-thaw” cycle within the disk. That happened when the Solar System was still just a disk of gas and dust. The water was essentially destroyed and then re-formed at higher temperatures.

We can’t see that effect anymore in our system. But, astronomers can point telescopes at other proplyds to see if the same process happens there. That’s what Peeters and her team did. They used JWST to look at d203-506. There, bright young stars flood the nearby regions in the proplyd with intense ultraviolet radiation. The UV breaks up water molecules to form hydroxyl molecules and that process also releases infrared light. JWST can search out that light and report back on how much hydroxyl
Did you miss our previous article…
https://mansbrand.com/the-12-best-hikes-in-utahs-national-parks-2/

Continue Reading

Trending