Connect with us

On July 14, 2023, at 2:35 pm Indian Standard Time (5:05 am EST), the Indian Space Resource Organisation (ISRO) successfully launched their Chandrayaan-3 spacecraft from the Satish Dhawan Space Center, which is the primary spaceport of the ISRO. The goal of the mission is to put India’s first lander (Vikram) and rover (Pragyan) on the lunar surface and is scheduled to touch down on the Moon on August 23, 2023. This mission comes after the ISRO’s Chandrayaan-2 Vikram lander crashed on the Moon on September 6, 2019, due to a last-minute guidance software glitch. While the ISRO indicated everything was going according to plan, they unexpectedly lost contact with the Vikram lander approximately 2.1 kilometers (1.3 miles) above the lunar surface.

Following in its predecessor’s footsteps, Chandrayaan-3 will attempt to land Vikram and Pragyan near the lunar south pole in hopes of using their respective scientific payloads for conducting in situ experiments, analysis, and observations to gain insights into the Moon’s composition. These include gaining insights into the lunar surface composition, presence of water ice in the lunar regolith, the history of impacts on the Moon, and the Moon’s atmospheric evolution. The spacecraft is comprised of the Propulsion Module and Lander Module, where the former’s task is to carry the Lander Module from launch injection to Lunar orbit, and the Lander Module is comprised of the Vikram lander and Pragyan rover.

Chandrayaan 3 Integrated Module in clean room 01.webp 750 683x1024 2
The Chandrayaan-3 Integrated Module with the Vikram lander plus Pragyan rover (top) and the Propulsion Module (bottom). (Credit: Indian Space Resource Organisation)

The Vikram lander scientific payload consists of the Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA) instrument, the Chandra Surface Thermophysical Experiment (ChaSTE), the Instrument for Lunar Seismic Activity (ILSA), the Langmuir Probe (LP), and NASA’s Laser Retroreflector Array (LRA). The Pragyan rover scientific payload consists of the Alpha Particle X-ray Spectrometer (APXS) and the Laser Induced Breakdown Spectroscope (LIBS).

The mission life for Vikram and Pragyan is expected to be one lunar day, or approximately 14 Earth days. Since the Moon always has one face towards the Earth and takes approximately 28 days to complete one orbit around the Earth, one lunar day is equivalent to 14 Earth days.

While Chandrayaan-2 met an unfortunate fate, the first mission of the Chandrayaan program was Chandrayaan-1, which consisted of a lunar orbiter and Moon Impact Probe (MIP) and launched from the Satish Dhawan Space Center on October 22, 2008. The spacecraft successfully entered lunar orbit on November 8, 2008, achieving final orbit insertion on November 12, 2008.

The MIP deployed from the spacecraft on November 14, and intentionally crashed near Shackleton Crater on the south pole of the Moon only thirty minutes later, during which time it continued to send back data which confirmed the existence of water ice within the lunar regolith. While the mission was expected to last approximately two years, the orbiter unexpectedly lost contact with ground control for unknown reasons on August 28, 2009, but a NASA radar determined in 2016 that the spacecraft was still in orbit around the Moon.

Despite the sudden end to the mission, the scientists determined that Chandrayaan-1 achieved 95 percent of its primary mission goals. These include using NASA’s Moon Mineralogy Mapper (M3) instrument to confirm the magma ocean hypothesis about the Moon and producing over 70,000 three-dimensional images of the lunar surface.

What new discoveries will Chandrayaan-3 with its Vikram lander and Pragyan rover make during its short mission to our nearest celestial neighbor? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post India Launches Chandrayaan-3 to the Moon, Hoping for a Successful Landing appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/some-star-systems-create-a-planet-sandwich/

Frontier Adventure

The Early Universe Had No Problem Making Barred Spiral Galaxies

heic0611b 580x580 1 jpg

Spiral galaxies like the Milky Way are like cosmic snowflakes—no two are exactly alike. For many years, astronomers thought spirals couldn’t exist until the universe was about half its present age. Now, a newly discovered galaxy in the early Universe is challenging that idea.

CEERS-2112 is an early “cosmic snowflake” with spiral arms and a bar across its middle. The amazing thing is that it’s showing this structure when the Universe was only 2 billion years old. That’s about five billion years earlier than astronomers expected something like that to exist. The fact that a perfectly formed spiral exists so early tells us that our ideas about galaxy formation in early cosmic history need some re-tuning.

Surveying the Early Universe

This galaxy showed up in a survey done by the JWST called “Cosmic Evolution Early Release Science” (CEERS). It uses JWST imaging and spectroscopy to do a survey of the early Universe to find the earliest galaxy. The analysis of the CEERS-2112 galaxy was done by an international team led by astronomer Luca Constantin of the Centro de Astrobiología in Spain.

CEERS results should show astronomers the early populations of galaxies at high redshifts (distances). They will also help them estimate related star-formation conditions and black hole growth. Finally, the work should give some insight into the formation of galaxy disks and bulges. Essentially, CEERS data should add to our store of knowledge about first light and reionization (which occurred after the Big Bang) and explain the formation and evolution of early galaxies.

Early deep-field images of very distant galaxies show shreds of galaxies and irregular clumps of stars in the early Universe. That was evident in some of the first Hubble Deep-Field images. The most distant ones in the images looked more blobby and indistinct. And, some of them appeared to be colliding, which fits into the collisional model of galaxy formation.

This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF
This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF

Forming Galaxies in the Early Universe

Prior to the Hubble and JWST eras, astronomers really felt that it would take a long time to form spiral galaxies. They often describe a hierarchical model of galaxy formation. That’s where smaller clumpy galaxies collide to form larger ones. Over time, those objects begin to develop structures like spiral arms and bars.

“In such galaxies, bars can form spontaneously due to instabilities in the spiral structure or gravitational effects from a neighboring galaxy,” according to astronomer and team member Alexander de la Vega. He is a post-doctoral researcher currently at the University of California Riverside. “In the past, when the Universe was very young, galaxies were unstable and chaotic. It was thought that bars could not form or last long in galaxies in the early universe.”

The spiral arms are likely the result of density waves moving through the galaxy. The bars also form from density waves radiating out from the center. That compresses material in the arms and bars, leading to bursts of star formation. That could explain why these regions in galaxies seem brighter, with their populations of hot young stars. All of this takes time to accomplish. That’s why astronomers suggested that it would take about half the age of the Universe to form spiral galaxies.

CEERS-2112 is Part of the Early Universe

CEERS-2112 upends the discussion about spiral formation, according to de la Vega. “Finding CEERS-2112 shows that galaxies in the early Universe could be as ordered as the Milky Way,” he said. “This is surprising because galaxies were much more chaotic in the early Universe and very few had similar structures to the Milky Way.”

stsciDid you miss our previous article…
https://mansbrand.com/apollo-samples-contain-hydrogen-hurled-from-the-sun/

Continue Reading

Frontier Adventure

Apollo Samples Contain Hydrogen Hurled from the Sun

regolith jpeg

According to the U.S. National Academies of Sciences, Engineering, and Medicine, men should drink 3.7litres of water a day and women 2.7litres. Now imagine a crew of three heading to the Moon for a 3 week trip, that’s something of the order of 189 litres of water, that’s about 189 kilograms! Assuming you have to carry all the water rather than recycle some of it longer trips into space with more people are going to be logistically challenging for water carriage alone. Researchers from the U.S. Naval Research Laboratory (NRL) have discovered lunar rocks with hydrogen in them which, when combined with lunar oxygen provide a possibly supply for future explorers.

A total of 382 kilograms of rock was brought back from the Moon by the Apollo program (I weigh about 80kg so that’s almost five of me in weight – and its all muscle I promise!) Some of the samples were immediately studied while others were sealed for future research hoping that future instrumentation would be more sensitive.

A research team from NRL, led by Katherine D. Burgess and team members Brittany A. Cymes and Rhonda M. Stroud, have recently announced their findings whilst studying some of the lunar rock. They wanted to understand the source of water on the Moon and to understand its formation. Future lunar exploration especially permanent lunar bases will rely heavily upon existing lunar resources. The paper articulates “Effective use of the resource depends on developing an understanding of where and how within the regolith the water is formed and retained”.

Image showing Buzz Aldrin's footprint in the dusty lunar regolith - Credit NASA
Buzz Aldrin’s footprint in the lunar regolith – the soft powdery material found over the surface of the Moon (Credit – NASA)

Transmission electron microscopy was used as part of the study to explore lunar sample 79221. The technique utilises a particle beam of electrons to visualise specimens and generate a highly magnified image. In particular, the team looked at grains of the minerals apatite and merrillite and discovered signs of ‘space’ weathering due to the solar wind. The solar wind is a stream of charged particles that rush outward from the Sun at speeds of up to 1.6 million km per hour!

They found hydrogen signatures in samples in vesicles – small holes left behind after lava cools. The discovery confirms that solar wind is being trapped in detectable quantities proving a potential reservoir that could be accessible to future explorers.

Hydrogen itself is a tremendously useful resource and if that can be mined from the lunar surface material it can aide many aspects of exploration. The real buzz around the discovery is that it may finally resolve the mystery about the origins of lunar water and that it might well be the result of chemical interactions between the solar wind and lunar rocks. If we can understand the origins of the lunar water – and we may finally be close to that now – then we can be sure we use it effectively to reach out further into the Solar System.

Source : Hydrogen detected in lunar samples, points to resource availability for space exploration

The post Apollo Samples Contain Hydrogen Hurled from the Sun appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/the-best-clothing-layers-for-winter-in-the-backcountry-2/

Continue Reading

Frontier Adventure

The Best Clothing Layers for Winter in the Backcountry

Tet19 047 Me on Teton Crest Trail copy cropped 16 jpg

By Michael Lanza

There’s one certainty about the clothing layers we use in winter: We get our money’s worth out of them. While a rain shell or puffy jacket may rarely come out of our pack on a summer hike or climb, we almost invariably wear every article of clothing we carry when backcountry, Nordic, or downhill skiing, snowshoeing, snowboarding, climbing, or trail running in winter. That’s money spent wisely to make us more comfortable and safer.

Every winter, I test out new clothing layers doing many of those activities frequently—something I’ve been doing for more than 25 years, previously as the lead gear reviewer for Backpacker magazine for 10 years and even longer running this blog. This review spotlights the best shell and insulated jackets, base layers, and pants I’ve found for high-exertion and moderate-exertion activities in winter.

Tet19 047 Me on Teton Crest Trail copy cropped 17 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-guides to classic backpacking trips. Click here to learn how I can help you plan your next trip.

A backcountry skier in Idaho’s Boise Mountains.
” data-image-caption=”My son, Nate, backcountry skiing in Idaho’s Boise Mountains.
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?resize=900%2C600&ssl=1″ alt=”A backcountry skier in Idaho’s Boise Mountains.” class=”wp-image-50099″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?resize=1024%2C683&ssl=1 1024w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?resize=300%2C200&ssl=1 300w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?resize=768%2C512&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?resize=150%2C100&ssl=1 150w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/01/DSC_3743.jpg?w=1200&ssl=1 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />My son, Nate, backcountry skiing in Idaho’s Boise Mountains.

In my story “How to Dress in Layers for Winter in the Backcountry,” I offer advice—based on four decades of backcountry experience—on how to choose a specific, personalized layering system for different exertion levels and body types in temperatures near or below freezing. Use the tips in that story, along with this review, to make the best choices in winter outdoor apparel for your activities, your climate, and your body.

Please share your experiences with any of these products in the comments section at the bottom of this review. I try to respond to all comments. And if you make a purchase through any of the affiliate links to online retailers in this story or other reviews at The Big Outside, you support my work on this blog at no cost to you. Thanks for doing that.

Don’t go out in the cold without my “12 Pro Tips For Staying Warm Outdoors in Winter.”

Backcountry avalanche instructor Chago Rodriguez skiing in the shadow of Mount Heyburn in Idaho’s Sawtooth Mountains.
” data-image-caption=”Expert backcountry avalanche instructor Chago Rodriguez skiing in the shadow of Mount Heyburn in Idaho’s Sawtooth Mountains. Click photo to learn about his courses.
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2015/01/Saw13-028-Pass-north-of-Mt.-Heyburn-Sawtooths-ID.jpg?fit=300%2C199&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2015/01/Saw13-028-Pass-north-of-Mt.-Heyburn-Sawtooths-ID.jpg?fit=900%2C598&ssl=1″ src=”https://i0.wp.com/thebigoutside
Did you miss our previous article…
https://mansbrand.com/jwst-reveals-protoplanetary-disks-in-a-nearby-star-cluster/

Continue Reading

Trending