Connect with us

Published

on

Launched on April 14, 2023, the European Space Agency’s (ESA) Jupiter Icy Moons Explorer (Juice; formerly known as JUICE) spacecraft has finally completed the unfurling of its solar panel arrays and plethora of booms, probes, and antennae while en route to the solar system’s largest planet.

However, Juice’s first six weeks in space haven’t been so smooth, as its Radar for Ice Moons Exploration (RIME) antenna became stuck and unable to deploy, but the engineers successfully deployed RIME after working the problem for over a month. The RIME unit is deemed as “mission critical” since its purpose is to map underneath the icy crusts of Jupiter’s three icy worlds: Europa, Ganymede, and Callisto.

“It’s been an exhausting but very exciting six weeks,” said Angela Dietz, who is the deputy spacecraft operations manager for the Juice mission. “We have faced and overcome various challenges to get Juice into the right shape for getting the best science out of its trip to Jupiter.”

The unfurling of the booms and antennae are crucial as they house either some or all of Juice’s 10 instruments, which comprise various scientific packages: the remote sensing package, the in situ package, and the geophysical package. Along with these incredible instruments, Juice will also be conducting an experiment known as the Planetary Radio Interferometer & Doppler Experiment (PRIDE), whose goal will be to use very-long baseline and ground-based interferometry to accurately measure Juice’s velocity and location in space.

This incredible cache of instruments will be responsible for exploring Jupiter while conducting 35 flybys of Europa, Ganymede, and Callisto, which are each hypothesized to contain bodies of liquid water beneath their icy crusts. Aside from the moons, Juice will also conduct further examinations of the entire Jupiter system, as scientists hypothesize this could help paint a clearer picture of gas giant exoplanets—and possible exomoons that have yet to be detected—that continue to be discovered throughout the galaxy.

Of the 10 Juice instruments, three stand out as some of the most important to the mission. These include the previously discussed RIME antenna, which will be responsible for mapping the interior environments of these icy worlds; the JANUS optical camera instrument, which will be able to capture images in 13 different colors, ranging from violet light to near infrared, and will be imaging Jupiter’s innermost Galilean moon, Io, as well; and the Radio & Plasma Wave Investigation (RPWI) instrument, which will be responsible for producing the first-ever 3D map of Jupiter’s electric fields and the interactions between Jupiter’s massive magnetosphere and the icy worlds of Europa, Ganymede, and Callisto.

e pia24477 final europa volcanism new pia 1041 750 1
Cutaway illustration depicting the interior of Europa. Mapping this interior will be one of the goals of the Juice mission using its RIME antenna. (Credit: NASA/JPL-Caltech/Michael Carroll)
imagesjuno20160629junomagnetosphere 16 1000
Artist rendition of Jupiter’s enormous magnetic field. Producing the first-ever 3D map of Jupiter’s electric fields and the interactions between Jupiter’s massive magnetosphere and its icy worlds will be one of the goals of the Juice mission using its RPWI instrument. (Credit: NASA Goddard Space Flight Center)

“Our 3D design strategy makes it possible to measure true physical observables, such as energy and momentum, without resorting to theories or simulations to interpret the data,” said Jan Bergman, who is a Senior Scientists at the Swedish Institute
Did you miss our previous article…
https://mansbrand.com/15-great-backpacking-trips-you-can-still-take-in-2023/

Continue Reading

Frontier Adventure

If You Could See Gravitational Waves, the Universe Would Look Like This

Published

on

LISA waves 1024x768 1

Imagine if you could see gravitational waves.

Of course, humans are too small to sense all but the strongest gravitational waves, so imagine you were a great creature of deep space, with tendrils that could extend a million kilometers. As gravitational waves rippled across your vast body, you would sense them squeezing and tugging ever so slightly upon you. And your brilliant mind could use these sensations to create an image in your mind. The ripples of distant supernovae, merging black holes, the undercurrent of the gravitational background. Creation, and destruction, all seen in your mind’s eye.

Perhaps there is such a creature in the vastness of space, but we humans must rely upon our intelligence and engineering. And we may achieve such a vision of the cosmos through a gravitational wave observatory such as the Laser Interferometer Space Antenna, or LISA.

Similar to LIGO, LISA will detect gravitational waves by bouncing laser light along extended arms, measuring the minuscule variations in arms length. But while LIGO has arms just 4 kilometers long, LISA could have arms millions of kilometers long. Where LIGO can detect powerful transient bursts of gravitational waves with frequencies under a kilohertz, such as the mergers of black holes, LISA will detect millihertz waves and will be able to detect not just black hole mergers, but the gradual inspiraling of supermassive black holes and possibly even the remnant gravitational waves of the big bang.

LISA waves 1024x768 2
Artist’s impression of the Laser Interferometer Space Antenna (LISA). Credit: ESA

With all this data, astronomers will be able to create a picture of the gravitational wave sky, just as radio astronomers can create images from radio light. If you wonder what the gravitational sky might look like, we now have an idea thanks to a recent study.

The team looked at various known gravitational wave sources such as binary white dwarf, neutron stars, and merging black holes, and calculated the frequencies and magnitudes of their gravitational waves. They then filtered these sources through the estimated limits of what LISA and a second proposed telescope the Advanced MilliHertz Gravitational-wave Observatory (AMIGO) should detect. From this, they assigned colors to various frequency ranges to create a false-color image of the sky. You can see this image above.

We’re still a decade or more away from the launch of LISA, so it will be a while before we can see the real image of the gravitational sky. But that image is out there right now. It ripples through all of us and has every day of our lives. If we’re patient and clever, it’s only a matter of time until we finally see those waves upon our cosmic shore.

Reference: Szekerczes, Kaitlyn, et al. “Imaging the Milky Way with Millihertz Gravitational Waves.” The Astronomical Journal 166.1 (2023): 17.

The post If You Could See Gravitational Waves, the Universe Would Look Like This appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/solar-sails-could-reach-mars-in-just-26-days/

Continue Reading

Frontier Adventure

Solar Sails Could Reach Mars in Just 26 Days

Published

on

20200109 ls2 australia new guinea f840 750

A recent study submitted to Acta Astronautica explores the potential for using aerographite solar sails for traveling to Mars and interstellar space, which could dramatically reduce both the time and fuel required for such missions. This study comes while ongoing research into the use of solar sails is being conducted by a plethora of organizations along with the successful LightSail2 mission by The Planetary Society, and holds the potential to develop faster and more efficient propulsion systems for long-term space missions.

“Solar sail propulsion has the potential for rapid delivery of small payloads (sub-kilogram) throughout the solar system,” Dr. René Heller, who is an astrophysicist at the Max Planck Institute for Solar System Research and a co-author on the study, tells Universe Today. “Compared to conventional chemical propulsion, which can bring hundreds of tons of payload to low-Earth orbit and deliver a large fraction of that to the Moon, Mars, and beyond, this sounds ridiculously small. But the key value of solar sail technology is speed.”

Unlike conventional rockets, which rely on fuel in the form of a combustion of chemicals to exert an external force out the back of the spacecraft, solar sails don’t require fuel. Instead, they use sunlight for their propulsion mechanism, as the giant sails catch solar photons much like wind sails catching the wind when traveling across water. The longer the solar sails are deployed, the more solar photons are captured, which gradually increases the speed of the spacecraft.

For the study, the researchers conducted simulations on how fast a solar sail made of aerographite with a mass up to 1 kilogram (2.2 pounds), including 720 grams of aerographite with a cross-sectional area of 104 square meters, could reach Mars and the interstellar medium, also called the heliopause, using two trajectories from Earth known as direct outward transfer and inward transfer methods, respectively.

The direct outward transfer method for both the trip to Mars and the heliopause involved the solar sail both deploying and departing directly from a polar orbit around the Earth. The researchers determined that Mars being in opposition (directly opposite Earth from the Sun) at the time of solar sail deployment and departure from Earth would yield the best results for both velocity and travel time. This same polar orbit deployment and departure was also used for the heliopause trajectory, as well. For the inward transfer method, the solar sail would be delivered to approximately 0.6 astronomical units (AU) from the Sun via traditional chemical rockets, where the solar sail would deploy and begin its journey to either Mars or the heliopause. But how does an aerographite solar sail make this journey more feasible?

20200109 ls2 australia new guinea f840 750 1
Image taken by The Planetary Society’s LightSail 2 on 25 November 2019 during its mission orbiting the Earth. The curved appearance of the sails is from the spacecraft’s 185-degree fisheye camera lens, and the image was processed with color-correction along with removal of parts of the distortion. (Credit: The Planetary Society)

“With its low density of 0.18 kilograms per cubic meter, aerographite undercuts all conventional solar sail materials,” Julius Karlapp, who is a Research Assistant at the Dresden University of Technology and lead author of the study, tells Universe Today. “Compared to Mylar (a metallized polyester foil), for example, the density is four orders of magnitude smaller. Assuming that the thrust developed by a solar sail is directly dependent on the mass of the sail, the resulting thrust force is much higher. In addition to the acceleration advantage, the mechanical properties of aerographite are amazing.”

Through these simulations, the researchers found the direct outward transfer method and inward transfer method resulted in the solar sail reaching Mars in 26 days and 126 days, respectively, with the first 103 days being the travel time from Earth to the deployment point at 0.6 AU. For the journey to the heliopause, both methods resulted in 5.3 years and 4.2 years, respectively, with the first 103 days of the inward transfer method also being devoted to the travel time from the Earth to the deployment point at 0.6 AU, as well. The reason the heliopause is reached in a
Did you miss our previous article…
https://mansbrand.com/dark-photons-could-be-the-key-to-both-dark-matter-and-the-muon-anomaly/

Continue Reading

Frontier Adventure

Dark Photons Could Be the Key to Both Dark Matter and the Muon Anomaly.

Published

on

darkphoton

If dark matter exists, then where are the particles?

This single question threatens to topple the standard cosmological model, known as the LCDM model. The CDM stands for cold dark matter, and according to the model makes up nearly 85% of matter in the universe. It should be everywhere, and all around us, and yet every single search for dark matter particles has come up empty. If dark matter particles are real, we know what they are not. We don’t know what they are.

There are lots of ideas, from WIMPs to axions to sterile neutrinos, and none of them have shown up in our detectors. But one of the problems could be that while dark matter particles are everywhere, their particle mass is much higher than we can detect in our particle accelerators and neutrino observatories. If that’s the case, we may never observe them directly. But we might be able to detect the force that allows them to interact.

In particle physics, each fundamental force has one or more carrier bosons. Electromagnetism has the photon, the strong force has the gluons, the weak force has W & Z bosons, the gravitational force the graviton. Dark matter interacts gravitationally, but it also may interact via a dark force, which should have a carrier boson known as the dark photon.

darkphoton 1
A hypothetical dark photon interaction. Credit: APS/Alan Stonebraker

Dark photons turn up in a generalization of the standard model of particle physics. According to theory, they would interact with dark matter similar to the way photons interact with charged particles. But just as the weak force and electromagnetism are connected as the electroweak force, this dark force and electromagnetism would be connected as a kind of electrodark force. What this means is that regular photons and dark photons could mix slightly, allowing dark matter to interact with regular matter very slightly. Although photons have no mass, dark photons would have mass. This means they would only interact over very short distances, and could quickly decay into other particles. Like the gluons of the strong force, we can’t observe them directly, but we can observe how they cause particles to interact. This is where a new study on dark photons comes in.

The authors analyze the dark photon model in two ways. The first is to use experimental data to constrain the physical parameters of dark photons, such as their mass and how strongly they mix with regular photons. The second is to compare a particle physics model with and without dark photons to key experimental results. In general, the study finds that the dark photon model is a better fit than the standard model, but it’s a particularly good fit for an experiment known as the anomalous magnetic moment of the gluon, or g-2.

The muon is a heavier sibling of the electron, and like the electron, it has an electric charge and a magnetic moment, or g-factor. The value of the muon g-factor is almost, but not exactly, equal to 2. The “not exactly” part, g – 2, is one of the most precisely measured values in particle physics. It is also one of the most precisely calculated values in particle theory. And they don’t agree.

muon 1024x768 1
Experiment vs theory for g – 2. Credit: Ryan Postel, Fermilab/Muon g-2 collaboration

Experimentally, g-2 = 0.00233184121. Theoretical calculations put g-2 = 0.00233183620. This is known as the g-2 anomaly and is beyond irksome. If you include dark photon interactions, the theoretical result becomes g-2 = 0.00233183939, which is significantly better. Overall, the dark photon model is preferred over the standard model at 6.5 sigma, which is a very strong result.

All of this is very interesting, but we should add a few caveats. The first is

Continue Reading

Trending