Connect with us

NASA’s long-lived Chandra X-ray Observatory teamed up with JWST for the first time, producing this incredibly detailed image of the famous supernova remnant Cassiopeia A. JWST first looked at the remnant in April 2023, and noticed an unusual debris structure from the destroyed star, dubbed the “Green Monster.” The combined view has helped astronomers better understand what this unusual structure is, plus it uncovered new details about the explosion that created Cas A.

This new image also includes data from the venerable Hubble Space Telescope and the Spitzer Space Telescope. The supernova explosion that created the iconic remnant only took place about 340 years ago. The new images and details were presented by Dan Milisavljevic from Purdue University at the 243rd meeting of the American Astronomical Society in New Orleans.

This colorful view can be divided into the various colors, which represents different wavelengths of light that were seen by the different telescopes. The X-rays seen by Chandra are blue, and this data revealed the hot gas in the debris is made of elements like silicon and iron. Astronomers believe the X-rays come from supernova debris from the destroyed star, which produced energetic electrons moving through the magnetic field lines in the blast wave. X-rays are also present as thin arcs in the outer regions of the remnant.

Cassiopeia A (Cas A) is a supernova remnant. It has been observed many times. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light. Credits: NASA, ESA, CSA, D. D. Milisavljevic (Purdue), T. Temim (Princeton), I. De Looze (Ghent University). Image Processing: J. DePasquale (STScI)
The April 2023 image of Cassiopeia A (Cas A) from JWST’s Mid-Infrared Instrument (MIRI) reveals Cas A in a new light, revealing the “Green Monster.” Credits: NASA, ESA, CSA, D. D. Milisavljevic (Purdue), T. Temim (Princeton), I. De Looze (Ghent University). Image Processing: J. DePasquale (STScI)

The infrared data from JWST are red, green, blue, which shows infrared emissions from dust that is warmed up because it is embedded in the hot gas. The optical data from Hubble are seen as red and white, which shows the stars in the field. The outer parts of the image also include infrared data from NASA’s Spitzer Space Telescope, seen in red, green and blue.

The astronomers who analyzed this data found that the filaments in the outer part of Cas A, from the blast wave, closely matched the X-ray properties of the Green Monster, including less iron and silicon than in the supernova debris.

You can see in this image below, which shows that the colors inside the Green Monster’s outline matches with the colors of the blast wave rather than the debris with iron and silicon. The researchers concluded that the Green Monster was created by a blast wave from the exploded star slamming into material surrounding it, supporting earlier suggestions from the JWST’s data alone.

“We already suspected the Green Monster was created by a blast wave from the exploded star slamming into material surrounding it,” said Jacco Vink of the University of Amsterdam, who lead the Chandra work. “Chandra helped us clinch the case.”

casa chandra labeled all 1024x826 1 jpg
Chandra Image of Cassiopeia A, Labeled. Credit: NASA/CXC/SAO

The debris from the explosion can be seen by Chandra because it is heated to tens of millions of degrees by shock waves. JWST’s data shows some material that has not been affected by shock waves, what can be called “pristine” debris.

In attempt to learn more about the supernova explosion, the researchers compared the JWST view of the pristine debris with X-ray maps of radioactive elements that were created in the supernova. They used NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) data to map radioactive titanium,
Did you miss our previous article…

Continue Reading

Frontier Adventure

Moon Lander Detects Technosignatures Coming from Earth

armstong and aldrin e1435608412815

The search for life has to be one of the most talked about questions in science. The question is, what do you look for? The Odysseus lunar lander has recently detected signs of a technologically advanced civilisation…on Earth! The lander is equipped with an instrument called ROLSES which has probed the radio emissions from Earth as if it was an exoplanet to se if it could detect signs of life! 

Odysseus was launched on 15 February, it was the Intuitive Machines lunar lander and it touched down in the solar polar region of the Moon seven days later. Since then it has been collecting valuable data from the area as a prelude for future human exploration. It was part of the Commercial Lunar Payload Services program which have all been built by private companies. Despite the hiccup of a landing where Odysseus tipped onto its side it has still been performing well.

There have been other challenges along the way. The laser guided navigation system which was supposed to aid the landing over the rocky surface failed. In a nod to Armstrong landing Apollo 11 manually in the last few minutes, the ground crew had to land using the optical camera system alone.  Even the journey to the Moon was not without incident. One of the antennae of the ROLSES system overheated and became dislodged from its housing.  On landing, an image showed the antenna sticking out. 

armstong and aldrin e1435608412815 1
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

On board Odysseus is the Radio wave Observations at the Lunar Surface of the photo Electron Sheath or ROLSES for short. It is a radio experiment designed to explore properties of the Earth’s atmosphere from the surface of the Moon. It was a unique opportunity to observe Earth in a completely different way and, to see if our approach for hunting for technologically capable alien civilisations are correct.

The instrument was built at NASA’s Goddard Space Flight Center in Maryland and included radio antennae and a device called a radio spectrometer. It’s purpose was to record a wide range of radio emissions from the ‘radio quiet’ locale of the Moon. It turned out to be a bit of a bonus though as the team were able to record radio waves coming from Earth for about an hour and a half. 

1280px NASA Selects First Commercial Moon Landing Services for Artemis Program 47974872533 1024x682 1
NASA has selected three commercial Moon landing service providers that will deliver science and technology payloads under Commercial Lunar Payload Services (CLPS) as part of the Artemis program. Each commercial lander will carry NASA-provided payloads that will conduct science investigations and demonstrate advanced technologies on the lunar surface, paving the way for NASA astronauts to land on the lunar surface by 2024…The selections are:..• Astrobotic of Pittsburgh has been awarded $79.5 million and has proposed to fly as many as 14 payloads to Lacus Mortis, a large crater on the near side of the Moon, by July 2021…• Intuitive Machines of Houston has been awarded $77 million. The company has proposed to fly as many as five payloads to Oceanus Procellarum, a scientifically intriguing dark spot on the Moon, by July 2021…• Orbit Beyond of Edison,
Did you miss our previous article…

Continue Reading

Frontier Adventure

The Inner and Outer Milky Way Aren’t the Same Thickness, and that’s Surprising

smithcloud nrao 1024x754 1

At first glance, the universe and night sky seem largely unchanging. The reality is very different, even now, a gas cloud is charging toward the Milky Way Galaxy and is expected to crash into us in 27 million years. A team of astronomers hoping to locate the exact position of the expected impact site have been unsuccessful but have accidentally measured the thickness of the Milky Way! Analysing radio data, they have been able to deduce the thickness of the inner and outer regions and discovered a dramatic difference between the two. 

The team of astronomers from the US National Science Foundation’s Green Bank Observatory were attempting to study the Smith Cloud. This high velocity cloud of hydrogen gas is located in the constellation Aquila at a distance of somewhere between 36,000 and 45,000 light years. Previous studies from the Green Bank Observatory have shown the cloud contains at least 1 million times the mass of the Sun and measures 9,800 light years long by 3,300 light years wide. 

smithcloud nrao 1024x754 2
A false-color image of the Smith Cloud made with data from the Green Bank Telescope (GBT). New analysis indicates that it is wrapped in a dark matter halo. Credit: NRAO/AUI/NSF

The plan was simple enough, to observe the spot where the cloud is currently interacting with the Milky Way. The observation is tricky enough though as the cloud is on the far side of the Milky Way and there is a lot of stuff in the way! The team, led by Toney Minter used the 20m Green Bank Telescope to search for dust and emissions from hydroxyl molecules (composed of a hydrogen and oxygen molecule.)  What the team expected to see was a difference in composition in the region of the Milky Way interacted with the cloud which, should have very little dust and hydroxyl molecules. Clouds in the Milky Way tend to have both so a difference should be detectable. 

credit Jay Young 1024x682 1
The Robert C. Byrd Green Bank Telescope. Credit: Jay Young.

Minter was candidly open about the study joking ‘I knew there was a low probability that I’d find what I was looking for—and I didn’t,. But this is all part of the scientific process. You learn from what you DO and DON’T find.’

Disappointingly the team did not detect any differences in composition but what they did find was equally as interesting. The study revealed information about the Milky Way itself and the structure of its inner regions. Minter and his team had to look through the Milky Way’s inner regions for their study and what they were able to determine was the thickness of the layer of molecules in the inner Galaxy. The information enabled them to deduce the scale height of the clouds of molecular gas in the inner Milky Way. The results showed that the layer of molecules in the inner region measured 330 light years thick while those in the outer parts measured twice as much, around 660 light years.

The discovery still leaves questions unanswered. The observation certainly shows the difference in thickness between the inner and outer regions but it doesn’t give any clue as to what is driving the difference. Further observations are now required to follow up on this discovery to try and model the underlying process. Of course one other question remains unanswered and that is the nature and mechanics of the Smith Cloud and how it will impact our own Galaxy. Far from being disappointed though, Minter stated ‘That’s why astronomy is exciting, our knowledge is always evolving’

Source : While Aiming for
Did you miss our previous article…

Continue Reading

Frontier Adventure

Catching Comet 13P Olbers This Summer

Comet 13P Olbers by William R. Brooks

A little known periodic comet graces northern hemisphere summer skies.

Short summer nights present a tough dilemma for nighttime astronomy: to stay up late, or wake up early? Summer 2024 gives you at least one reason to opt for the former, as periodic Comet 13P/Olbers graces the evening sky.

The History of the Comet

The comet was first spotted on the night of March 6th, 1815 by astronomer Heinrich Olbers (of Olbers’ Paradox fame) observing from Bremen, Germany. The orbit was later described by Carl Gauss and Friedrich Bessel as just shy of 74 years, about five years off of the present value.

A sketch of Comet 13P Olbers from 1887 by William Robert Brooks. Credit: Public Domain

The Comet’s Orbit

Comet 13P/Olbers is on a 69 year orbit, which takes it from a perihelion 1.175 Astronomical Units (AU) from the Sun just outside of the Earth’s orbit, out to an aphelion of 32.5 AU out beyond the orbit of Neptune.

Perihelion for the comet occurs June 30th, 2024 at 1.175 AU from the Sun and 1.919 AU from the Earth.

The orbit of Comet 13P Olbers. Credit: NASA/JPL

Synopsis of the Current Apparition

In 2024, Comet 13P Olbers loiters low to the west this summer for northern observers at dusk. This is because it’s approaching Earth along our line of sight. The comet will seem to hang about 20-30 degrees above the horizon on summer evenings for mid-latitude northern hemisphere observers.

June 15
The location of the comet in the evening sky in mid-June. Credit: Stellarium

Here’s our look at what to expect from the comet month-by-month. Unless otherwise noted, ‘Passes near’ means a closest approach of less than one angular degree:


17-The orbital path of the comet is edge on as seen from our point of view, and the comet may exhibit a spiky anti-tail.

19-Passes into the constellation of the Lynx.

28-Passes near the +4.3 magnitude star 31 Lyncis.

The celestial path of the comet
Did you miss our previous article…

Continue Reading