Connect with us

Earth is a seismically active planet, and scientists have figured out how to use seismic waves from Earthquakes to probe its interior. We even use artificially created seismic waves to identify underground petroleum-bearing formations. When the InSIGHT (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander was sent to Mars, it sensed Marsquakes to learn more bout the planet’s interior.

Researchers think they can use Marsquakes to answer one of Mars’ most pressing questions: Does the planet hold water trapped in its subsurface?

Ground-penetrating radar can tell us what’s underground on Earth. However, it has limitations. It can reach about 30 meters underground in low-conductivity materials and as shallow as one meter in conductive materials. Scientists are developing other methods, including seismological interferometers, to use seismology to detect deeper aquifers, but those methods are not fully developed. There’s also so much water inside Earth that it creates noisy signals.

These methods are not applicable to Mars, where equipment is limited.

However, researchers from Penn State University think they can use a different type of seismology to detect Mars’ subsurface water. It’s called the seismoelectric method, and it combines seismology and electromagnetism. It senses the electromagnetic signals that come from the propagation of seismic waves in a planet’s interior.

Their new research, “Characterizing Liquid Water in Deep Martian Aquifers: A Seismo-Electric Approach,” has been published in JGR Planets. Nolan Roth, a doctoral candidate in the Department of Geosciences at Penn State, is the lead author.

“The scientific community has theories that Mars used to have oceans and that, over the course of its history, all that water went away,” Roth said. “But there is evidence that some water is trapped somewhere in the subsurface. We just haven’t been able to find it. The idea is, if we can find these electromagnetic signals, then we find water on Mars.”

This artist's impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars's northern hemisphere and in some regions reaching depths greater than 1.6 kilometres. Credit: ESO/M. Kornmesser
This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere and in some regions reaching depths greater than 1.6 kilometres. Credit: ESO/M. Kornmesser

Seismology works by detecting elastic waves that propagate through the Earth. These waves are divided into subtypes, especially P-waves, or primary waves, and S-waves, or secondary waves. Each type of wave travels differently depending on the material it’s moving through. In broad terms, P-waves travel faster than S-waves, so they arrive at seismographic sensors at different times. The differences in those times and other factors reveal the characteristics and densities of the material the waves are travelling through.

The seismoelectric method detects the electromagnetic signals created by seismic waves rather than the waves themselves. As the waves travel through a planet, materials like rock or water move differently in response. Those differences create magnetic fields that surface sensors can detect.

“If we listen to the marsquakes that are moving through the subsurface, if they pass through water, they’ll create these wonderful, unique signals of electromagnetic fields,” Roth said. “These signals would be diagnostic of current, modern-day water on Mars.”

This method is especially suited to Mars. On Earth, water is mixed throughout the subsurface, not just in aquifers, making detection difficult. But Mars is extremely dry, other than potential subsurface aquifers. If we detect buried water
Did you miss our previous article…
https://mansbrand.com/perseverance-found-some-strange-rocks-what-will-they-tell-us/

Continue Reading

Frontier Adventure

Bear Essentials: How to Store Food When Backcountry Camping

Tet19 047 Me on Teton Crest Trail copy cropped 28

By Michael Lanza

On our first night in the backcountry of Yosemite National Park on one of my earliest backpacking trips, two friends and I—all complete novices—hung our food from a tree branch near our camp. Unfortunately, the conifer trees around us all had short branches: Our food stuff sacks hung close to the trunk.

During the night, the predictable happened: We awoke to the sound of a black bear clawing up the tree after our food.

Despite our nervousness and incompetence, we somehow managed to shoo that black bear off, though not before he (or she) departed with a respectable haul from our food supply. But by virtue of having started out with way more food than we needed—another rookie mistake that, ironically, compensated for this more-serious rookie mistake (read my tips on not overpacking)—we made it through that hike without going hungry and ultimately had a wonderful adventure.

And we went home with a valuable lesson learned.

Tet19 047 Me on Teton Crest Trail copy cropped 29
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

A black bear along the Sol Duc River Trail in Olympic National Park.
” data-image-caption=”A black bear along the Sol Duc River Trail in Olympic National Park.
” data-medium-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2.jpg?fit=300%2C201&ssl=1″ data-large-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2.jpg?fit=900%2C602&ssl=1″ tabindex=”0″ role=”button” src=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2-1024×685.jpg?resize=900%2C602&ssl=1″ alt=”A black bear along the Sol Duc River Trail in Olympic National Park.” class=”wp-image-34782″ srcset=”https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2.jpg 1024w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2.jpg 300w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2.jpg 768w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2.jpg 1080w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2019/03/06232206/Olym6-070-Black-bear-Sol-Duc-River-Trail-Olympic-NP-WA-2.jpg 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />A black bear along the Sol Duc River Trail in Olympic National Park.

I’ve learned much more about storing food properly in the backcountry over the more than three decades since that early trip, including the 10 years I spent as the Northwest Editor of Backpacker magazine and even longer running this blog. This article shares what I’ve learned about protecting food from critters like bears and, more commonly, mice and other small animals and some birds like ravens.

Follow the tips below and you’ll not only save yourself and your party or family from going hungry, you might save a bear from developing a habit of seeing humans as sources of food, which too often leads to a bad outcome for that animal.

If you have any questions or tips of your own to share, please do so in the comments section at the bottom of this
Did you miss our previous article…
https://mansbrand.com/the-rugged-desert-moss-best-equipped-to-survive-on-mars/

Continue Reading

Frontier Adventure

The Rugged Desert Moss Best Equipped to Survive on Mars

Mars

For decades, we have seen Mars as a desolate landscape devoid of any signs of life. Attempt to identify ways of growing plants and food on the red planet have focussed on greenhouse like structures to enable plants to survive, that is, until now! A desert moss called ‘Syntrichia caninervis’ has been identified and it can grown in extreme environments like Antarctica and the Mojave Desert. A new study revealed the moss can survive Mars-like environments too including low temperatures, high levels of radiation and drought. 

Mars has often be referred to as the “Red Planet” for its distinct red hue. It is the fourth planet from the Sun and to some extent resembles the Earth. Polar ice caps, seasonal weather patterns, extinct volcanoes, ancient riverbeds and flood plains are among the many surface features and. This cold world has fascinated us for centuries and its thin atmosphere, mostly made up of carbon dioxide, has been subjected to lots of studies. It has been thought for many years that it experiences some of the harshest weather conditions, including planet-wide dust storms but the recent study suggests there may just be a plant on Earth capable of surviving these conditions. 

Mars 1
Mars, Credit NASA

Exploring and colonising planets like Mars can enhance human sustainability. Since no life forms have been found on Mars, introducing Earth organisms might be necessary for creating suitable conditions for human life in a process known as terraforming. This will involve selecting or engineering plants that can thrive in the harsh environments of an alien world. Few studies have tested organisms’ ability to withstand extreme environments of space or Mars, focusing mainly on microorganisms, algae, and lichens. However until recently, studies including mosses and whole plants have been lacking.

There have been many long term plans and even whimsical ideas to establish settlements on Mars. Pivotal to the success is the establishment of adapted crops that can grow in controlled, synthetic environments. However, to develop such a plant requires significant progress and development before plants are capable of growing in the soils and harsh conditions. In the report by lead author Xiaoshuang Li and team the incredible resilience of a moss called Syntrichia caninervis (S. caninervis) to survive a Mars-like environment even after having lost more than 98% of its water content.

Studies into the resilience of the plants have shown they can withstand extremely low temperatures and regenerate even after being stored in a freezer at -80°C for five years or in liquid nitrogen for one month. S. caninervis also demonstrates high resistance to gamma radiation and can survive in simulated Martian conditions.

The study concluded that S. caninervis is among the most stress-tolerant organisms known. It shows how it is a real potential species for the colonisation of alien worlds like Mars. The resilience to extreme conditions such as desiccation, low temperatures, and high radiation makes it an ideal for future terraforming efforts. It helps to understand the unique properties of this moss (in particular) and how it can form a foundational layer for biologically sustainable human habitats in space.

Source : The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments

The post The Rugged Desert Moss Best Equipped to Survive on Mars appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/do-planets-have-the-raw-ingredients-for-life-the-answer-is-in-their-stars/

Continue Reading

Frontier Adventure

Do Planets Have the Raw Ingredients for Life? The Answer is in their Stars

stsci 01gw5g941atzw8b9vvmh23pqhy 1024x576 1

Finding planets that already have, or have the ingredients for intelligent life is a real challenge. It is exciting that new telescopes and spacecraft are in development that will start to identify candidate planets. Undertaking these observations will take significant amounts of telescope time so we need to find some way to prioritise which ones to look at first. A new paper has been published that suggests we can study the host stars first for the necessary raw elements giving a more efficient way to hunt for similar worlds to Earth. 

Exoplanets are planets that orbit stars outside our solar system. They have been identified in the thousands since the first discovery in 1992, totalling currently 5,288. They vary widely in size, composition, and orbit, ranging from gas giants like Jupiter to rocky, potentially habitable planets similar to Earth. Advanced telescopes and detection methods like the transit and radial velocity techniques have enabled the discovery of Earth-sized exoplanets. Their study not only enhances our understanding of planetary formation and evolution but also the search for extraterrestrial life. 

stsci 01gw5g941atzw8b9vvmh23pqhy 1024x576 2
This illustration shows what the hot rocky exoplanet TRAPPIST-1 b could look like. A new method can help determine what rocky exoplanets might have large reservoirs of subsurface water. Credits: NASA, ESA, CSA, J. Olmsted (STScI)

The search for extraterrestrial life is no easy feat. Looking for aliens or at least environments where extraterrestrial life could one day evolve means knowing what to look for. To star with we can assume life has three basic requirements; I) building block elements (i.e., CHNOPS – carbon, hydrogen, nitrogen, oxygen, phosphorous and sulphur,) II) a solvent to life’s reactions (generally, liquid water) and III) a thermodynamic disequilibrium. It is assumed that similar requirements might be universal in the Cosmos. There is of course a chance of life based on a completely different set of needs but if we are going to start somewhere then we may as well start looking for life like that found on Earth, otherwise well, who knows what to look for!

Life on Earth can gain energy from a wide range of different thermodynamic disequilibria, a great example is life that thrives at the bottom of the ocean, taking energy and indeed nutrients from thermal vents. More widely it relies upon chemical reactions where the an electron is lost or gained changing its oxidation state. This is known as redox disequilibrium. Each reaction requires special proteins called oxidoreductases. The process requires metals as catalysts and without them, the process is unable to progress. 

hydrothermal vent
A black smoker hydrothermal vent discovered in the Atlantic Ocean in 1979. It’s fueled from deep beneath the surface by magma that superheats the water. The plume carries minerals and other materials out to the sea. Courtesy USGS.

The distribution of these metals (which are more accurately known as transition metals) in the Universe varies significantly over time and space. Despite this wide ranging distribution across the cosmos, the role of these metals in enabling life has been largely overlooked in identifying astrobiological targets. The paper published by Giovanni Covone and Donato Giovannelli propose that the presence of certain elements is essential for
Did you miss our previous article…
https://mansbrand.com/hiking-angels-landing-what-you-need-to-know-3/

Continue Reading

Trending