Connect with us

When Fine Woodworking magazine printed its first issue in the winter of 1975, a bowl made by Irving Fischman, SM ’72, PhD ’75, was on the cover. Though he had started woodworking in the MIT Hobby Shop only a few years before, he had already become highly skilled at the craft and found a lifelong passion.

“Woodworking is so fascinating that at some point in my grad school career I was thinking of doing it professionally,” says Fischman, a retired real estate developer and business consultant. “I really think working with your hands is part of human nature, and it’s so satisfying.”

Founded by students in 1938, and now used by more than 200 members of the MIT community each semester, the Hobby Shop relocated in fall 2023 when a newly renovated space—the former home of the MIT Museum store—became available in Building N51.

Intended from the start as a place for nonacademic projects, the shop continues to give many a welcome break from other work. “Because you have to concentrate on what you’re doing, you don’t think about the homework problem or the research you’re doing. You let that happen in the back of your mind,” Fischman says.

Tess Smidt ’12, an assistant professor of electrical engineering and computer science, agrees. “It’s a different way of being creative than what I do in my research, which is mostly on the computer,” she says. “It’s nice to be able to use my hands; it’s really a treat.”

The refurbished, fully equipped wood and metal shop offers membership to students, staff, faculty, alumni, and their spouses. (The only requirement for alums is new member orientation and a fee of $200 per term or $500 per year.) Members are particularly enjoying the tall windows of the new shop, which faces Massachusetts Avenue.

“It’s like night and day, literally,” Smidt says of the difference from the old space, which was in the basement of Building W31 for 65 years. “Having the sunlight and the space, you want to hang out there more.”

Entering a new age

Much has changed over the years, Fischman says. “The original shop had a printing press and a darkroom, and people used to make their own electronics. There’s been quite a transformation, especially to the digital-controlled machine age,” he says.

The new shop is equipped with a suite of state-of-the-art machines, including a computer numerical control (CNC) router, 3D printers, a welding station, and a precision water-jet cutter. It has all the staples—planers, jointers, lathes, and hand tools—and it’s got a new, quieter air filtration system. “Incredible resources went into this shop,” Smidt says.

HobbyShop5 MelMusto 1 scaled

HobbyShop4 Smidt MelMusto scaled
MIT faculty members Alexander Rakhlin, PhD ’06, (left) and Tess Smidt ’12 work on furniture projects in the new MIT Hobby Shop.

One of Fischman’s favorite tools is the giant belt sander, which allows him to sand a whole tabletop at one time. “You get this wonderful finish on your project,” he says. “Years ago, you’d have a little hand sander, and it would scratch the board and do all sorts of terrible things.”

Smidt says she loves the lathe but is also very fond of a small tool called a French curve scraper, which she used to sand the curves of the desk that was her ambitious first project in the shop. The piece, which Smidt calls her “noodle desk,” consists of a butcher block top that S-curves to the floor

Read More

————

By: Kathryn M. O’Neill
Title: MIT Hobby Shop rebuilt
Sourced From: www.technologyreview.com/2024/02/28/1087648/mit-hobby-shop-rebuilt/
Published Date: Wed, 28 Feb 2024 12:00:00 +0000

Continue Reading

Tech

The return of pneumatic tubes

2CTK80D scaled

Pneumatic tubes were touted as something that would revolutionize the world. In science fiction, they were envisioned as a fundamental part of the future—even in dystopias like George Orwell’s 1984, where the main character, Winston Smith, sits in a room peppered with pneumatic tubes that spit out orders for him to alter previously published news stories and historical records to fit the ruling party’s changing narrative.

Doctor holding pneumatic tube carrier while standing in pharmacy
Abandoned by most industries at midcentury, pneumatic tube systems have become ubiquitous in hospitals.ALAMY

In real life, the tubes were expected to transform several industries in the late 19th century through the mid-20th. “The possibilities of compressed air are not fully realized in this country,” declared an 1890 article in the New York Tribune. “The pneumatic tube system of communication is, of course, in use in many of the downtown stores, in newspaper offices […] but there exists a great deal of ignorance about the use of compressed air, even among engineering experts.”

Pneumatic tube technology involves moving a cylindrical carrier or capsule through a series of tubes with the aid of a blower that pushes or pulls it into motion. For a while, the United States took up the systems with gusto. Retail stores and banks were especially interested in their potential to move money more efficiently: “Besides this saving of time to the customer the store is relieved of all the annoying bustle and confusion of boys running for cash on the various retail floors,” one 1882 article in the Boston Globe reported. The benefit to the owner, of course, was reduced labor costs, with tube manufacturers claiming that stores would see a return on their investment within a year.

“The motto of the company is to substitute machines for men and for children as carriers, in every possible way,” a 1914 Boston Globe article said about Lamson Service, one of the largest proprietors of tubes at the time, adding, “[President] Emeritus Charles W. Eliot of Harvard says: ‘No man should be employed at a task which a machine can perform,’ and the Lamson Company supplements that statement by this: ‘Because it doesn’t pay.’”

By 1912, Lamson had over 60,000 customers globally in sectors including retail, banks, insurance offices, courtrooms, libraries, hotels, and industrial plants. The postal service in cities such as Boston, Philadelphia, Chicago, and New York also used tubes to deliver the mail, with at least 45 miles of Lamson tubing in place by 1912.

On the transportation front, New York City’s first attempt at a subway system, in 1870, also ran on a pneumatic system, and the idea of using tubes to move people continues to beguile innovators to this day. (See Elon Musk’s largely abandoned Hyperloop concept of the 2010s.)

But by the mid to late 20th century, use of the technology had largely fallen by the wayside. It had become cheaper to transport mail by truck than by tube, and as transactions moved to credit cards, there was less demand to make change for cash payments. Electrical rail won out over compressed air, paper records and files disappeared in the wake of digitization, and tubes at bank drive-throughs started being replaced by ATMs, while only a fraction of pharmacies used them for their own such services. Pneumatic tube technology became virtually obsolete.

Except in hospitals.

“A pneumatic tube system today for a new hospital that’s being built is ubiquitous. It’s like putting a washing machine or a central AC system in a new home. It just makes too much sense to not do it,” says Cory Kwarta, CEO of Swisslog Healthcare, a corporation that—under its TransLogic company—has provided pneumatic tube systems in health-care facilities for over 50 years. And while the sophistication of these systems has changed over time, the fundamental technology of using pneumatic force to move a capsule from one destination to another has remained the same.

By the turn of the 20th century,

Read More

————

By: Vanessa Armstrong
Title: The return of pneumatic tubes
Sourced From: www.technologyreview.com/2024/06/19/1093446/pneumatic-tubes-hospitals/
Published Date: Wed, 19 Jun 2024 09:00:00 +0000

Did you miss our previous article…
https://mansbrand.com/the-download-video-generating-ai-and-metas-voice-cloning-watermarks/

Continue Reading

Tech

The Download: video-generating AI, and Meta’s voice cloning watermarks

This is today’s edition of The Download our weekday newsletter that provides a daily dose of what’s going on in the world of technology

I tested out a buzzy new text-to-video AI model from China

You may not be familiar with Kuaishou, but this Chinese company just hit a major milestone: It’s released the first ever text-to-video generative AI model that’s freely available for the public to test.

The short-video platform, which has over 600 million active users, announced the new tool, called Kling, on June 6. Like OpenAI’s Sora model, Kling is able to generate videos up to two minutes long from prompts.

But unlike Sora, which still remains inaccessible to the public four months after OpenAI debuted it, Kling has already started letting people try the model themselves. Zeyi Yang, our China reporter, has been putting it through its paces. Here’s what he made of it.

This story is from China Report, our weekly newsletter covering tech in China. Sign up to receive it in your inbox every Tuesday.

Meta has created a way to watermark AI-generated speech

The news: Meta has created a system that can embed hidden signals, known as watermarks, in AI-generated audio clips, which could help in detecting AI-generated content online.

Why it matters: The tool, called AudioSeal, is the first that can pinpoint which bits of audio in, for example, a full hour-long podcast might have been generated by AI. It could help to tackle the growing problem of misinformation and scams using voice cloning tools. Read the full story.

—Melissa Heikkilä

The return of pneumatic tubes

Pneumatic tubes were once touted as something that would revolutionize the world. In science fiction, they were envisioned as a fundamental part of the future—even in dystopias like George Orwell’s 1984, where they help to deliver orders for the main character, Winston Smith, in his job rewriting history to fit the ruling party’s changing narrative. 

In real life, the tubes were expected to transform several industries in the late 19th century through the mid-20th. The technology involves moving a cylindrical carrier or capsule through a series of tubes with the aid of a blower that pushes or pulls it into motion, and for a while, the United States took up the systems with gusto.

But by the mid to late 20th century, use of the technology had largely fallen by the wayside, and pneumatic tube technology became virtually obsolete. Except in hospitals. Read the full story.

—Vanessa Armstrong

This story is from the forthcoming print issue of MIT Technology Review, which explores the theme of Play. It’s set to go live on Wednesday June 26, so if you don’t already, subscribe now to get a copy when it lands.

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 Nvidia has become the world’s most valuable company 
Leapfrogging Microsoft and Apple thanks to the AI boom. (BBC)
Nvidia’s meteoric rise echoes the dot com boom. (WSJ $)
CEO Jensen Huang is now one of the richest people in the world. (Forbes)
The firm is worth more than China’s entire agricultural industry. (NY Mag $)
What’s next in chips. (MIT Technology Review)

2 TikTok is introducing AI avatars for ads
Which seems like a slippery slope. (404 Media)
India’s farmers are getting their news from AI news anchors. (Bloomberg $)
Deepfakes of Chinese influencers are livestreaming 24/7. (MIT Technology Review)

3 Boeing’s Starliner spacecraft will stay in space for a little longer
Officials need to troubleshoot some issues before it can head back to Earth. (WP $)

4STEM students are refusing to work at Amazon and Google
Until the companies end their involvement with Project Nimbus. (Wired $)

5 Google isn’t what it used to be
But is Reddit really a viable alternative? (WSJ $)
Why Google’s AI Overviews gets things wrong. (MIT Technology Review)

6 A security bug allows anyone to impersonate Microsoft corporate email accounts
It’s making it harder to spot phishing attacks. (TechCrunch)

7 How deep sea exploration has changed since the Titan disaster
Robots are taking humans’ place to plumb the depths. (NYT $)
Meet the divers trying to figure out how deep humans can go. (MIT Technology Review)

8 How the free streaming service Tubi took over the US
Its secret weapon? Old movies.(The Guardian)

9 A new AI video tool instantly started ripping off Disney
Raising some serious questions about what the model had been trained on. (The Verge)
What’s next for generative video. (MIT Technology Review)

10 Apple appears to have paused work on the next Vision Pro
Things aren’t looking too bright for the high-end headset. (The Information $)
These minuscule pixels are poised to take augmented reality by

Read More

————

By: Rhiannon Williams
Title: The Download: video-generating AI, and Meta’s voice cloning watermarks
Sourced From: www.technologyreview.com/2024/06/19/1094041/the-download-video-generating-ai-and-metas-voice-cloning-watermarks/
Published Date: Wed, 19 Jun 2024 12:10:00 +0000

Continue Reading

Tech

Scaling green hydrogen technology for the future

Thyssenkrupp Nucera green

Unlike conventional energy sources, green hydrogen offers a way to store and transfer energy without emitting harmful pollutants, positioning it as essential to a sustainable and net-zero future. By converting electrical power from renewable sources into green hydrogen, these low-carbon-intensity energy storage systems can release clean, efficient power on demand through combustion engines or fuel cells. When produced emission-free, hydrogen can decarbonize some of the most challenging industrial sectors, such as steel and cement production, industrial processes, and maritime transport.

Thyssenkrupp Nucera green hydrogen 1200px 1

“Green hydrogen is the key driver to advance decarbonization,” says Dr. Christoph Noeres, head of green hydrogen at global electrolysis specialist thyssenkrupp nucera. This promising low-carbon-intensity technology has the potential to transform entire industries by providing a clean, renewable fuel source, moving us toward a greener world aligned with industry climate goals.

ccelerating production of green hydrogen

Hydrogen is the most abundant element in the universe, and its availability is key to its appeal as a clean energy source. However, hydrogen does not occur naturally in its pure form; it is always bound to other elements in compounds like water (H2O). Pure hydrogen is extracted and isolated from water through an energy-intensive process called conventional electrolysis.

Hydrogen is typically produced today via steam-methane reforming, in which high-temperature steam is used to produce hydrogen from natural gas. Emissions produced by this process have implications for hydrogen’s overall carbon footprint: worldwide hydrogen production is currently responsible for as many CO2 emissions as the United Kingdom and Indonesia combined.

A solution lies in green hydrogen—hydrogen produced using electrolysis powered by renewable sources. This unlocks the benefits of hydrogen without the dirty fuels. Unfortunately, very little hydrogen is currently powered by renewables: less than 1% came from non-fossil fuel sources in 2022.

A massive scale-up is underway. According to McKinsey, an estimated 130 to 345 gigawatts (GW) of electrolyzer capacity will be necessary to meet the green hydrogen demand by 2030, with 246 GW of this capacity already announced. This stands in stark contrast to the current installed base of just 1.1 GW. Notably, to ensure that green hydrogen constitutes at least 14% of total energy consumption by 2050, a target that the International Renewable Energy Agency (IRENA) estimates is required to meet climate goals, 5,500 GW of cumulative installed electrolyzer capacity will be required.

However, scaling up green hydrogen production to these levels requires overcoming cost and infrastructure constraints. Becoming cost-competitive means improving and standardizing the technology, harnessing the scale efficiencies of larger projects, and encouraging government action to create market incentives. Moreover, the expansion of renewable energy in regions with significant solar, hydro, or wind energy potential is another crucial factor in lowering renewable power prices and, consequently, the costs of green hydrogen.

Electrolysis innovation

While electrolysis technologies have existed for decades, scaling them up to meet the demand for clean energy will be essential. Alkaline Water Electrolysis (AWE), the most dominant and developed electrolysis method, is poised for this transition. It has been utilized for decades, demonstrating efficiency and reliability in the chemical industry. Moreover, it is more cost effective than other electrolysis technologies and is well suited to be run directly with fluctuating renewable power input. Especially for large-scale applications, AWE demonstrates significant advantages in terms of investment and operating costs. “Transferring small-scale manufacturing and optimizing it towards mass manufacturing will need a high level of investment across the industry,” says Noeres.

Industries that already practice electrolysis, as well as those that already use hydrogen, such as fertilizer production, are well poised for conversion to green hydrogen. For example, thyssenkrupp nucera benefits from a decades-long heritage using electrolyzer technology in the

Read More

————

By: MIT Technology Review Insights
Title: Scaling green hydrogen technology for the future
Sourced From: www.technologyreview.com/2024/06/18/1092956/scaling-green-hydrogen-technology-for-the-future/
Published Date: Tue, 18 Jun 2024 14:00:00 +0000

Did you miss our previous article…
https://mansbrand.com/the-download-ais-limitations/

Continue Reading

Trending