Connect with us

Space agencies worldwide have some very ambitious plans that will take place in this decade and the next. For starters, NASA and its agency and commercial partners plan to return to the Moon for the first time since the Apollo Era. Beyond that, they also intend to build the infrastructure that will allow for a “sustained program of lunar exploration,” such as bases on the surface and the Lunar Gateway. Once all of that is in place, NASA will be contemplating sending crewed missions to Mars.

This raises many challenges, including logistics, energy requirements, and the health and safety of astronauts. One crucial concern that is not often thought of by the general public is what to do about the waste generated along the way. To address this, the NASA Tournament Lab (NTL) has partnered with HeroX once again to launch the NASA Waste Jettison Mechanism Challenge. With a prize purse of $30,000, NASA is seeking solutions for safely and effectively jettisoning waste that cannot be recycled.

This competition complements NASA’s Waste to Base Challenge, which launched on January 18th, 2021. This incentive prize will award $24,000 to teams that offer “circular economy” proposals that could lead to spacecraft systems capable of converting human waste, packaging, and assorted trash into products astronauts can use for the mission. But even with a robust waste-management system, deep-space missions will still generate some waste that cannot be reused, repurposed, or recycled.

0110e 1
Artist’s impression of NASA’s Crew Transfer Vehicle (CTV) using its nuclear-thermal rocket engines to accelerate away from Low Earth Orbit (LEO). Credit: NASA

For this Challenge, NASA is looking for detailed designs for jettison mechanisms that can efficiently eject non-recyclable material from a spacecraft during crewed missions to Mars. Controlled jettison operations are an effective means for mitigating risks to spacecraft and crew. Unchecked waste can take up crucial volumes in a spacecraft, pose potential hazards for the crew, and release contaminants that threaten astronaut health.

“This challenge requires creativity, and there is no doubt that our network of problem solvers will come up with something ingenious,” said HeroX CEO Kal K. Sahota in an official press release. “I look forward to seeing the thoughtful and sustainable solutions designed by our community of innovators.”

Jettison mechanisms refer to controlled means for disposing waste materials and objects that (as the name suggests) consist of ejecting them via airlock into space. These objects will then assume an orbit around the Sun but are extremely unlikely to interfere with future operations given the huge distances involved. In addition, ejecting waste mass has benefits as far as spacecraft performance, and fuel requirements are concerned.

Steve Sepka, the project manager for the Trash Compaction and Processing System at NASA’s Ames Research Center, is also part of NASA’s Waste Jettison Mechanism Challenge team. As Sepka explained to Universe Today via email:

“Carrying unneeded mass results in a substantial need for extra fuel for planetary ascent, descent, and transition between planets. So much so that reducing waste mass is considered Mars mission enabling. If the mass is biodegradable, then keeping it onboard poses a significant risk as a biohazard for crew health. Also keeping a viable living space for crew is also a concern. NASA is developing different technologies to remove or repurpose waste: Waste-to-Base, Trash-to-Gas, and Jettison are some of them.”

NTR bimodal
The Crew Transfer Vehicle (CTV) using its nuclear-thermal rocket engines to slow down and establish orbit around Mars. Credit: NASA

Some examples of material generated during long-duration spaceflights include biological waste from astronauts, spent components, protective packaging, and damaged parts. While much of this can be recycled or reused with the right technology, NASA anticipates that a four-person crew traveling to Mars will create a

Continue Reading
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Frontier Adventure

The 12 Best Dayhikes in Yosemite

Tet19 047 Me on Teton Crest Trail copy cropped 38 jpg

By Michael Lanza

The natural beauty, variety, pristine quality, and scale of America’s National Park System have no parallel in the world. Still, a handful of flagship parks rise above the rest—including, unquestionably, Yosemite. Created in 1890, our third national park harbors some of the most breathtaking and inspiring wild lands in the entire parks system. And you can reach much of Yosemite’s finest scenery on dayhikes.

This story shares my picks for the 12 best dayhikes in Yosemite, from popular hikes like Half Dome, the Mist Trail, and Upper Yosemite Falls to some trails and peaks you may not have heard of—including the nearly 11,000-foot summit known to have “the best 360 in Yosemite.”

This list of Yosemite’s best hikes is drawn from my numerous trips dayhiking and backpacking all over the park going back more than 30 years, including the 10 years I spent as a field editor for Backpacker magazine and even longer running this blog. Use this story as your guide and you will see the best scenery in Yosemite that’s accessible on a moderate to full day of hiking.

Please share your thoughts on any of these hikes or your own favorites in Yosemite in the comments section at the bottom of this story. I try to respond to all comments.

Tet19 047 Me on Teton Crest Trail copy cropped 39 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

May Lake in Yosemite National Park.
” data-image-caption=”May Lake in Yosemite National Park.
” data-medium-file=”″ data-large-file=”″ src=”″ alt=”May Lake in Yosemite National Park.” class=”wp-image-38065″ srcset=” 1024w, 300w, 768w, 1080w, 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />May Lake in Yosemite National Park. Click photo for my e-guide “The Prettiest, Uncrowded Backpacking Trip in Yosemite.”

May Lake and Mount Hoffmann

2.4 to 6 miles, 500 to 2,100 feet up and down

From the 10,850-foot summit of Mount Hoffmann (lead photo at top of story) in the geographic center of Yosemite—often described as having “the best 360 in Yosemite”—you’ll look out over virtually the entire park, seeing Half Dome, Clouds Rest, and Yosemite Valley, the Clark and Cathedral Ranges, and the sea of peaks sprawling across northern Yosemite. The hike culminates with a steep, third-class scramble up the final 200 feet to the summit, where you stand at the brink of cliffs with serious exposure (although you don’t have to stand at that dizzying edge).

The summit of Yosemite’s Mount Hoffmann.
” data-medium-file=”″ data-large-file=”
Did you miss our previous article…

Continue Reading

Frontier Adventure

The Kuiper Belt is Much Bigger Than We Thought

Payload FULL jpg

NASA’s New Horizons spacecraft is just over 8.8 billion km away, exploring the Kuiper Belt. This icy belt surrounds the Sun but it seems to have a surprise up its sleeve. It was expected that New Horizons would be leaving the region by now but it seems that it has detected elevated levels of dust that are thought to be from micrometeorite impacts within the belt. It suggests perhaps that the Kuiper Belt may stretch further from the Sun than we thought! 

The Kuiper Belt is found beyond the orbit of Neptune and is thought to extend out to around 8 billion km. Its existence was first proposed in the mid-20th century by Gerard Kuiper after whom the belt has been named. It’s home to numerous icy bodies and dwarf planets and offers valuable insight into the formation and evolution of the Solar System.

Launched by NASA in January 2006 atop an Atlas V rocket, the New Horizon’s spacecraft embarked on its mission to explore the outer Solar System. The primary objective was to perform a close flyby of Pluto, which it did 9.5 years after it launched, and continue on to explore the Kuiper Belt.

New Horizons completed its flyby of Pluto in 2015, and has been travelling through the Kuiper Belt since. As it travels through the outer reachers of the region, almost 60 times the distance from Earth to the Sun, its Venetia Burney Student Dust Counter (SDC) has been counting dust levels. The instrument was constructed by students at the Laboratory for Atmospheric Space Physics at the University of Colorado Boulder. Throughout New Horizon’s journey, SDC has been monitoring dust levels giving fabulous insight into collision rates among objects in the outer Solar System. 

The New Horizons instrument payload that is currently doing planetary science, heliospheric measurements, and astrophysical observations. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The New Horizons instrument payload that is currently doing planetary science, heliospheric measurements, and astrophysical observations. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The dust particle detections announced in a recent paper published in the Astrophysical Journal Letters by lead author Alex Doner are thought to be frozen remains from collisions between larger Kuiper Belt Objects (KBOs). The results were a real surprise and challenged the existing models that predicted a decline in dust density and KBO population. It seems that the belt extends many billions of miles beyond the current estimates or maybe even that there is a second belt!

The results came from data gathered over a three year period during New Horizon’s journey from 45 to 55 astronomical units (where 1 astronomical unit is the average distance between the Sun and Earth). While New Horizon’s was gathering data about dust, observatories such as the 8.2-meter optical-infrared Subaru Telescope in Hawaii have been making discoveries of new KBOs. Together these findings suggest the Kuiper Belt objects and dust may well extend a further 30 AUs out to about 80 AUs from the Sun.

New Horizons is now in its extended mission and hopefully has sufficient power and propellant to continue well into the 2040s. At its current velocity that will take the spacecraft out to about 100 AU from the Sun so the research team speculate that the SDC could identify the transition point into interstellar space.

Source : NASA’s New Horizons Detects Dusty Hints of Extended Kuiper Belt

The post The Kuiper Belt is Much Bigger Than We Thought appeared first on Universe Today.

Did you miss our previous article…

Continue Reading

Frontier Adventure

A Planetary Disk in the Orion Nebula is Destroying and Replenishing Oceans of Water Every Month

DyGvigfWsAIzaxj 580x580 1 jpg

Planet-forming disks are places of chaotic activity. Not only do planetesimals slam together to form larger worlds, but it now appears that the process involves the destructive recycling of water within a disk. That’s the conclusion from scientists studying JWST data from a planetary birth crèche called d203-506 in the Orion Nebula.

The data they studied suggest that an amount of water equivalent to all of Earth’s oceans is created and replenished in a relatively short period—about a month. According to study co-lead Els Peeters at Western University in Canada, it was relatively easy to discover this process in the protoplanetary disk. “This discovery was based on a tiny fraction of our spectroscopic data,” she said. “It is exciting that we have so much more data to mine and I can’t wait to see what else we can find.”

The Orion Nebula is a vast active star- and planet-forming region and the d203-506 protoplanetary disk lies within it at a distance of about 1,350 light-years away from Earth. Astronomers study the nebula to understand all aspects of star birth since there are so many newborn stars there. In addition, many are surrounded by disks of gas and dust, called protoplanetary disks (proplyds, for short). Those regions are excellent places to observe planet-formation processes, and particularly the interplay between the young stars and their disks.

The Orion Nebula, one of the most studied objects in the sky. It's likely that many of its protostars and their planetary disks contain water in some form. Image: NASA
The Orion Nebula is one of the most studied objects in the sky. Many of its protostars and their planetary disks likely contain water in some form. Image: NASA

The Water Cycle of a Proplyd

We all know that water is an important ingredient for life. It certainly played a role in creating and sustaining life on our planet. As it turns out, water is a significant fraction of the materials in a proplyd. In the infant Solar System, water existed throughout our proplyd long before any of the planets formed, largely in their icy form, either as icy bodies or locked into asteroids and planetesimals. It also exists in interstellar space.

This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals.  Credit: NASA
This view of Earth’s horizon by an Expedition 7 crewmember onboard the International Space Station. A new study suggests that Earth’s water didn’t all come from comets, but likely also came from water-rich planetesimals. Credit: NASA

Most of Earth’s water got delivered to the forming planet over millions of years. It melted or outgassed to form the oceans, rivers, and lakes we see today. But, some fraction of the water in our system’s birth disk probably went through a “freeze-thaw” cycle within the disk. That happened when the Solar System was still just a disk of gas and dust. The water was essentially destroyed and then re-formed at higher temperatures.

We can’t see that effect anymore in our system. But, astronomers can point telescopes at other proplyds to see if the same process happens there. That’s what Peeters and her team did. They used JWST to look at d203-506. There, bright young stars flood the nearby regions in the proplyd with intense ultraviolet radiation. The UV breaks up water molecules to form hydroxyl molecules and that process also releases infrared light. JWST can search out that light and report back on how much hydroxyl
Did you miss our previous article…

Continue Reading