Connect with us

There are so many asteroids. Just in our own backyard, we’ve found over 30,000 Near Earth asteroids. Exploring them using traditional methods and launching a custom-made mission, like Hayabusa or OSIRIS-REx, would almost certainly be cost-prohibitive. So how can we assess whether they would make good targets for early asteroid mining missions? Ground imaging can help, but there’s nothing like being on-site on one of these asteroids to get a sense of what they are made of. Those visits would be much easier if we mass-produced the Asteroid Mobile Imager and Geologic Observer (AMIGO). 

AMIGO is a concept developed at the University of Arizona. It is a standard design that fits into a 1U CubeSat package of 10 x 10 x 10 cm and carries an array of scientific equipment with it. These include a magnetometer, an electric field sensor, a microscope, a laser range finder, an inertial measurement unit (IMU), and, of course, a camera. 

Each of these instruments would play a role in determining what both the inside and outside of an asteroid of made of. The microscope could take close-up pictures of samples directly underneath the lander. At the same time, the IMU could be used as a proxy for seismic data that could help determine the asteroid’s internal structure.

Screenshot 2023 07 26 170015 1
Artist’s depiction of a AMIGO mission.
Credit – Schwartz et al.

One way to utilize these various sensors is to use another feature of AMIGO – its ability to bounce. When fully deployed from its 1U packaging, it expands to about 1m in size. There’s still some debate on what exactly the inflatable surface will be made out of and what exactly it will be inflated with. Still, the underlying idea is creating a protective, hard-to-damage shell around most of the scientific components.

This unique shape also allows AMIGO to use a novel propulsion system. It can use a miniaturized micro-electromechanical system (MEMS) to maneuver itself, mainly by bouncing around an asteroid with small gravity. During these hops, it can also use its onboard sensors to determine gravity at specific spots along the asteroid, thereby further helping flesh out its internal structure. 

Several of these relatively small bots could be deployed on a single asteroid from a mothership, and they could use that same mothership to send data and download navigational commands. Solar panels could power them and should be able to have a relatively long life span, given the rapidity with which most asteroids rotate. Nuances of its inflatability can also ensure that an AMIGO always lands facing “up” with its solar panels directed at the Sun.

There’s lots of reasons to understand new asteroids. Fraser explains one of the main ones.

Those solar panels themselves can even act as a secondary sensor by calculating the amount of dust that ends up landing on them. What’s even more impressive, almost all of these sensors, and the control scheme to orient and maneuver the spacecraft, can be bought off the shelf. While the overall mission concept is still at a relatively early Technology Readiness Level, many of the components already had a spaceflight heritage. Combining them into a single platform, even such a small one should be possible.

But that remains just a possibility for now, as much hasn’t been published on the concept since 2019, when a flurry of papers was released. It remains to be seen if these tiny, bouncing balls of capability will ever see the light of deep space.

Learn More:
University of Arizona ASTEROIDS Lab – Asteroid Surface Exploration
Schwartz et al. – Asteroid Mobile Imager and Geologic Observer (AMIGO)
UT – Robotic asteroid mining spacecraft wins a grant from NASA
UT – Study Looks at Making Asteroid Mining Viable

Lead Image:
Artist’s depiction of a fully inflated AMIGO.
Credit – Schwatz et al.

The post Need To Image An Asteroid Close Up? There’s an AMIGO For That. appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/the-best-backpacking-trips-in-zion-national-park/

Frontier Adventure

A Protoplanetary Disc Has Been Found… in Another Galaxy!

eso1903a jpg

Astronomers have imaged dozens of protoplanetary discs around Milky Way stars, seeing them at all stages of formation. Now, one of these discs has been found for the first time — excitingly — in another galaxy. The discovery was made using the Atacama Large Millimeter/Submillimeter Array (ALMA) in Chile along with the , which detected the telltale signature of a spinning disc around a massive star in the Large Magellanic Cloud, located 160,000 light-years away.

“When I first saw evidence for a rotating structure in the ALMA data I could not believe that we had detected the first extragalactic accretion disc, it was a special moment,” said Anna McLeod, an associate professor at Durham University in the UK and lead author of the study published in Nature. “We know discs are vital to forming stars and planets in our galaxy, and here, for the first time, we’re seeing direct evidence for this in another galaxy.”

McLeod and her fellow researchers were doing a follow-up study on a system named HH 1177, which was located deep inside a gas cloud in the Large Magellanic Cloud LMC). In 2019, the researchers reported that in using the Very Large Telescope, they observed a jet emitted by a fledgling but massive star with a mass 12 times greater than our Sun. This was the first time such a jet has been observed in visible light outside the Milky Way, as they are usually obscured by their dusty surroundings. However, the relatively dust-free environment of the LMC allowed for HH 1177 to be observed at visible wavelengths. At nearly 33 light-years in length, it is one of the longest such jets ever observed.

eso1903a 1 jpg
This dazzling region of newly-forming stars in the Large Magellanic Cloud (LMC) was captured by the Multi Unit Spectroscopic Explorer instrument on ESO’s Very Large Telescope. The relatively small amount of dust in the LMC and MUSE’s acute vision allowed intricate details of the region to be picked out in visible light. Credit: ESO, A McLeod et al.

“We discovered a jet being launched from this young massive star, and its presence is a signpost for ongoing disc accretion,” McLeod said in an ESO press release. But to confirm that such a disc was indeed present, the team needed to measure the movement of the dense gas around the star.

The gas motion indicated that there is a radial flow of material falling onto a central disk-like structure. In their new observations, the team found that the disk exhibits signs of Keplerian rotation – which is a disk of material that obey’s Kepler’s laws of motion due to the dominance of a massive body at its center. Their observations revealed that “the rotating toroid [was] feeding an accretion disk and thus the growth of the central star,” the McLeod and team wrote in their paper. “The system is in almost all aspects comparable to Milky Way high-mass YSOs (young stellar objects) accreting gas from a Keplerian disk.

As matter is pulled towards a growing star, it cannot fall directly onto it; instead, it flattens into a spinning disc around the star. Closer to the center, the disc rotates faster, and this difference in speed is the clear evidence to show astronomers an accretion disc is present.

“The frequency of light changes depending on how fast the gas emitting the light is moving towards or away from us,” said Jonathan Henshaw, a research fellow at Liverpool John Moores University in the UK, and co-author of the study, in the ESO press release. “This is precisely the same phenomenon that occurs when the pitch of an ambulance siren changes as it passes you and the frequency of the sound goes from higher to lower.”

Massive stars like HH 1177 live fast and die hard. In the Milky Way, stars like this are challenging to observe because they are often clouded from view by the dusty material from which they form — which also obscures the disc that might be shaping around them.

“They form in heavily embedded regions full of gas and dust, such that the accretion phase typically occurs before the star has time to become exposed due to stellar feedback, whether internal or external,” the team wrote in their paper. “The primary reason for the lack of observations of extragalactic accretion disks around forming stars has been the limited spatial resolution of both ground- and space-based observatories.”

But the Large Magellanic Cloud is fundamentally different from because the stars that form there have a lower dust content than in the Milky
Did you miss our previous article…
https://mansbrand.com/a-gamma-ray-burst-disturbed-the-earths-ionosphere/

Continue Reading

Frontier Adventure

A Gamma-ray Burst Disturbed the Earth’s Ionosphere

Gamma ray burst illustration article 580x326 1 jpg

You’d think that something happening billions of light-years away wouldn’t affect Earth, right? Well, in 2002, a burst of gamma rays lasting 800 seconds actually impacted our planet. They came from a powerful and very distant supernova explosion. Its gamma-ray bombardment disturbed our planet’s ionosphere and activated lightning detectors in India.

This particular gamma-ray burst (GRB) occurred in a galaxy almost 2 billion light-years away (and took two billion years to reach us). Not only did ground-based detectors record the bombardment, but satellites sensitive to high-energy outbursts “saw” it, too. That included the European Space Agency’s International Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission. It typically records gamma-ray bursts on a daily basis, but this one—named GRB 221009A—outshone all the rest.

GRBs this strong happen (on average) about once every 10,000 years, so this was one that caught everyone’s attention. “It was probably the brightest gamma-ray burst we have ever detected,” says Mirko Piersanti, University of L’Aquila, Italy, and lead author of a paper analyzing the event.

How The Gamma-ray Burst Affected the Ionosphere

Most of the time, radiation from the Sun bombards our planet. That’s often strong enough to affect the ionosphere. That’s an atmospheric layer that bristles with electrically charged gases called plasma. It stretches from around 50 km to 950 km in altitude above the surface. There’s a “top-side ionosphere” (which lies above 350 km) and a “bottom-side ionosphere”) which lies below that. Scientists are pretty familiar with how the Sun treats this region of the atmosphere, particularly during periods of heavy solar activity.

GRB 221009A: looking back through time at a gamma-ray-burst. Courtesy ESA
GRB 221009A: looking back through time at a gamma-ray-burst. Courtesy ESA

This GRB blast triggered instruments generally reserved for studying the immense explosions in the Sun’s atmosphere known as solar flares. “Notably, this disturbance impacted the very lowest layers of Earth’s ionosphere, situated just tens of kilometers above our planet’s surface, leaving an imprint comparable to that of a major solar flare,” says Laura Hayes, research fellow and solar physicist at ESA. That imprint basically was an increase in ionization in the bottom-side ionosphere. It left an imprint in low-frequency radio signals that move between Earth’s surface and the lowest levels of the ionosphere. “Essentially, we can say that the ionosphere ‘moved’ down to lower altitudes, and we detected this in how the radio waves bounce along the ionosphere,” explained Laura.

Gamma Ray Bursts in the Data

Past GRBs bothered the bottom-side ionosphere but didn’t always disturb the topside. Scientists just assumed that by the time it reached Earth, the blast from a GRB didn’t have the “oomph” to change that part of the ionosphere. GRB 221009A proved that idea wrong. Thanks to data from the orbiting China Seismo-Electromagnetic Satellite (CSES), scientists saw a strong disturbance in the upper ionosphere. It created a strong electric field variation and was the first time scientists saw this connected to a GRB. The result is the first-ever top-side ionospheric measurement of electric field variations triggered by a gamma-ray outburst at cosmic distances.

INTEGRAL and other spacecraft continually record GRBs from around the Universe. Have they all affected our ionosphere in some way? Is there a way to find out? Now that scientists know what ionospheric effects to look for, they can search the data to find answers. Data from INTEGRAL, and CSES will be particularly useful. They should be able to correlate it with other GRBs seen since 2018. That’s when CSES was launched.

Evidence of ionospheric disturbances from GRBs goes back as far as 1988. That’s when the effects of a 1983 gamma-ray burst were first reported. Scientists now have an array of ground-based and space-based detectors—such as Swift, Fermi, MAXI, AGILE, INTEGRAL, and CSES—gave strong detections of the emissions from GRB221009A.

Implications for Future GRB Effects on Earth

This kind of disturbance
Did you miss our previous article…
https://mansbrand.com/should-we-send-humans-to-venus/

Continue Reading

Frontier Adventure

Should We Send Humans to Venus?

venussurface 750 jpg

NASA is preparing to send humans back to the Moon with the Artemis missions in the next few years as part of the agency’s Moon to Mars Architecture with the long-term goal of landing humans on the Red Planet sometime in the 2030s or 2040s. But what about sending humans to other worlds of the Solar System? And, why not Venus? It’s closer to Earth than Mars by several tens of millions of kilometers, and despite its extremely harsh surface conditions, previous studies have suggested that life could exist in its clouds. In contrast, we have yet to find any signs of life anywhere on the Red Planet or in its thin atmosphere. So, should we send humans to Venus?

“Yes, we should send humans to Venus,” Dr. Paul Byrne, who is an Associate Professor of Earth, Environmental, and Planetary Sciences at Washington University in St. Louis, tells Universe Today. “But first, let’s talk about what ‘sending humans to Venus’ actually means. The surface of Venus is hellish, so nobody would last long there nor volunteer to go. Above the clouds, the temperature and pressure are almost like a nice spring day here on Earth, so aside from tiny sulphuric acid cloud droplets you’d be okay (with a breathing apparatus).”

These “hellish” conditions that Dr. Byrne alludes to are the extreme conditions across the surface of Venus, including surface pressures 92 times that of Earth’s surface and average surface temperatures of approximately 464 degrees Celsius (867 degrees Fahrenheit). In contrast, Earth’s average surface temperatures are a calm 15 degrees Celsius (59 degrees Fahrenheit). These extreme pressures and temperatures have made landing on the surface of Venus even more difficult, as the former Soviet Union continues to be the only nation to have successfully landed on Venus’ surface, having accomplished this feat with several of their Venera and Vega missions. However, the longest mission duration for the lander was only 127 minutes (Venera 13), which also conducted the first sound recording on another planet.

venussurface 750 1 jpg
Color images taken by the Soviet Union’s Venera 13 lander on the surface of Venus on March 1, 1982, with the lander surviving only 127 minutes due to Venus’s extreme surface conditions. (Credit: NASA)

“If we were to send humans to Venus, they’d be going in a spacecraft that would fly by the planet en route somewhere else,” Dr. Byrne tells Universe Today. “If we were to one day send humans actually to Venus itself for science and engineering purposes, then a cloud-based habitat is the way to go. Getting humans onto the Venus surface is going to require so much technology and expense that, for the foreseeable future, I don’t think anyone will think it worth doing.”

A 2015 study presented at the AIAA Space and Astronautics Forum and Exposition outlined a NASA study for the High Altitude Venus Operational Concept (HAVOC) mission that would involve a 30-day crewed mission using an airship equipped with solar panels within the upper atmosphere of Venus. This is because Venus’ upper atmosphere at approximately 50 kilometers (30 miles) above the surface exhibits much more hospitable conditions, including temperatures between 30 to 70 degrees Celsius (86 to 158 degrees Fahrenheit) and pressures very close to that of Earth. However, Dr. Byrne refers to HAVOC as an “unbelievably expensive concept”.

NASA Cloud City on Venus 750 1 jpg
Artist rendition of proposed habitable airships traversing Venus’ atmosphere, which has been proposed as the High Altitude Venus Operational Concept (HAVOC) mission. (Credit: NASA)

As for using Venus while en route to another location in the Solar System, Venus has been used on several occasions to slingshot spacecraft to the outer Solar System as well as for exploration of the inner Solar System, such as Mercury and the Sun. For example, NASA’s Galileo and Cassini spacecraft used gravity assists

Continue Reading

Trending