Connect with us

The rings of Saturn are some of the most well-known and captivating spectacles in the night sky, which are so large they can easily be observed with amateur telescopes or even a pair of high-powered binoculars. However, from time to time, Saturn’s rings “disappear” from view, a phenomenon known ring-plane crossing, with the rings being observed as a flat line running straight through the massive gas giant. Ring-plane crossing occurs approximately every 15 years and is slated to happen next in March 2025, with the rings slowly getting “larger” in the months afterwards before “disappearing” again in November 2025. But what causes ring-plane crossing?

Saturn’s ring-plane crossing is due to the viewing angles from Earth changing as both planets are tilted during their respective orbits around our Sun and orbit at different speeds and times, as the Earth orbits the Sun in one year, Saturn takes approximately 29.4 years to complete one orbit. As a result, our view of Saturn changes over time, and the “size” of the rings appear to get larger and smaller, and periodically disappear entirely from view for a short time. As noted, ring-plane crossing happens approximately every 15 years, with the most recent occurrence being observed directly from Earth happening in 2009. However, both the 2009 and 2025 events are not observable from Earth since Saturn will be too close to the Sun.

NASA’s Hubble Space Telescope captured some fantastic images of Saturn’s rings edge-on in 1995, which provided astronomers the opportunity to observe some of Saturn’s larger moons and try to discover new moons, as well. The reason why ring-plane crossing allows astronomers to find new moons is due to the decreased glare of the bright rings that normally obscure smaller objects orbiting Saturn from being seen. In fact, between 1655 and 1980, ring-plane crossing is responsible for astronomers discovering 13 new moons of Saturn, with additional moons of Saturn being discovered by NASA’s Voyager 1 spacecraft in 1980. Two of Saturn’s most well-known moons, Enceladus and Mimas (aka the Death Star), were discovered by William Herschel during the ring-plane crossing of 1789-1790, and Hyperion was discovered during the ring-plane crossing of 1848-1849.

opo9525a 750 1 1 jpg
Image of ring-plane crossing at Saturn taken by NASA’s Hubble Space Telescope in May 1995, with a similar ring-plane crossing event scheduled to occur in March 2025. (Credit: Reta Beebe (New Mexico State University), D. Gilmore, L. Bergeron (STScI), NASA/ESA, Amanda S. Bosh (Lowell Observatory), Andrew S. Rivkin (Univ. of Arizona/LPL), the HST High Speed Photometer Instrument Team (R.C. Bless, PI), and NASA/ESA)

Ring-crossing was accidentally discovered by Galileo Galilei in 1612, who is also responsible for first discovering Saturn’s rings only two years earlier. When he observed the rings had apparently disappeared, he wrote in his notes, “I do not know what to say in a case so surprising, so unlooked for and so novel”.

As noted, ring-plane crossing occurs due to the combination of the tilts of Earth and Saturn and their respective orbits, which also influences the north-south direction of the rings during the crossing. For example, the ring-plane crossing event occurring in March 2025 will see Saturn’s rings proceed from south to north, but this contrasts with the ring-plane crossing event that will occur several decades from now in August 2068. For this event, the rings will proceed from north to south.

While ring-plane crossing causes Saturn’s rings to give the illusion they are “disappearing”, this illusion won’t be around forever. This is because the icy grains that comprise Saturn’s rings are slowly being lost to the planet with a 2019 study used ground-based observations to estimate the rings will be gone for good in approximately 292 million years. Most recently, a 2023 study used data from NASA’s Cassini mission to provide a larger range of the remaining lifespan of Saturn’s rings at between 15 to 400 million years.

What new discoveries will astronomers make using Saturn’s ring-plane crossing in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Saturn’s Rings will Disappear in 2025. Don’t Worry, They’ll Return Soon Enough appeared first on Universe Today.

Frontier Adventure

The International Space Station Celebrates 25 Years in Space

DrRDzDDX0AEQSxB 750 jpg

NASA recently celebrated the 25th anniversary of the International Space Station (ISS) with a space-to-Earth call between the 7-person Expedition 70 crew and outgoing NASA Associate Administrator, Bob Cabana, and ISS Program Manager, Joel Montalbano. On December 6, 1998, the U.S.-built Unity module and the Russian-built Zarya module were mated in the Space Shuttle Endeavour cargo bay, as Endeavour was responsible for launching Unity into orbit that same day, with Zarya having waited in orbit after being launched on November 20 from Kazakhstan.

“I cannot believe it was 25 years ago today that we grappled Zarya and joined it with the Unity node,” said Cabana during the call from NASA Headquarters in Washington, D.C. “Absolutely amazing.”

While this milestone marks 25 years since the first two ISS modules were attached, it would be another two years until the ISS had a crew, Expedition 1, which arrived at the ISS in November 2000 and stayed until March 2001, beginning an uninterrupted human presence on the ISS that continues today. During the two-year period between the first mating and Expedition 1, the Russian-built Zvedza module was attached to the Unity and Zarya modules on July 26, 2000, after launching from Kazakhstan two weeks earlier. Assembly of the large modules of the ISS would continue until 2021 when the Roscosmos-funded Nauka module was attached in July 2021.

Now in its final configuration, the ISS is approximately the size of an American gridiron football field consisting of 8 solar arrays that provide the station’s power while maintaining an average altitude of 400 kilometers (250 miles). Its massive size consists of a pressurized module length along the major axis of 67 meters (218 feet), a truss (primary body) length of 94 meters (310 feet), a solar array length (measured along the truss) of 73 meters (239 feet), and a total mass of 419,725 kilograms (925,335 pounds).

DrRDzDDX0AEQSxB 750 1 jpg
Artist rendition of the ISS compared to an American gridiron football field. (Credit: NASA)
The station pictured from the SpaceX Crew Dragon 5 cropped 750 jpg
Image of the ISS taken by SpaceX Crew-2 mission on November 8, 2021 after it successfully undocked from the ISS Harmony module. (Credit: NASA)

Ever since the 3-person Expedition 1 crew first took command of the ISS, a total of 273 individuals from 21 countries have visited the orbiting laboratory and have been comprised of trained astronauts and private visitors. From most visitors to least, the following visitor countries include the United States, Russia, Japan, Canada, Italy, France, Germany, Saudi Arabia, United Arab Emirates, Belgium, Brazil, Denmark, Great Britain, Israel, Kazakhstan, Malaysia, Netherlands, South Africa, South Korea, Spain, and Sweden.

“One of my favorite aspects of the International Space Station is the international part of it,” said NASA Astronaut and Expedition 70 Flight Engineer, Jasmin Moghbeli, during the call. “We each bring our unique perspectives, not just from our different nationalities, but also our different backgrounds. I think we’re definitely strengthened by the international partnership. It’s just like gaining redundancy when you have multiple partners working together. It’s stronger and more resilient to any sort of problems or obstacles that come our way and so it definitely makes us stronger. And I think that’s why we have had the International Space Station up here for 25 years now.”

photo 7 1 750 1

Continue Reading

Frontier Adventure

Starship | Second Flight Test

hqdefault 2

hqdefault 3

On November 18, 2023, Starship successfully lifted off at 7:02 a.m. CT from Starbase on its second integrated flight test.

While it didn’t happen in a lab or on a test stand, it was absolutely a test. What we did with this second flight will provide invaluable data to continue rapidly developing Starship.

The test achieved a number of major milestones, helping us improve Starship’s reliability as SpaceX seeks to make life multiplanetary. The team at Starbase is already working final preparations on the vehicles slated for use in Starship’s third flight test.

Congratulations to the entire SpaceX team on an exciting second flight test of Starship!

Follow us on X.com/SpaceX for continued updates on Starship’s progress

Did you miss our previous article…
https://mansbrand.com/for-its-final-trick-chandrayaan-3-brings-its-propulsion-module-to-earth-orbit/

Continue Reading

Frontier Adventure

For its Final Trick, Chandrayaan-3 Brings its Propulsion Module to Earth Orbit

F3t7yPTaYAAeyJ6 1024x1024 1 jpg

On August 23, ISRO’s Vikram lander detached from its propulsion module and made a soft landing near the Moon’s south pole region. The lander then deployed its Pragyan rover, and for two weeks the endearing little solar-powered rover performed marvelously, detecting water ice and characterizing the makeup of the lunar regolith before succumbing to the darkness and cold of the lunar night.

But since the rover mission ended, the propulsion module that brought it to the Moon has made a detour, performing a series of complex maneuvers that took it from a tight lunar orbit back to Earth orbit. This was possible because the module still had more than 100 kg of fuel, allowing scientists to conduct additional maneuvers and experiments.

Right now, the propulsion module (PM) is orbiting Earth at an altitude of 115,000 km (71,500 miles), well above geostationary orbit. ISRO said the mission team decided to use the available fuel in the propulsion module to derive additional information for future lunar missions. More specifically, this demonstration gave them the chance to test mission operation strategies for a future sample return mission.

F3t7yPTaYAAeyJ6 1024x1024 2 jpg
A graphic of the Chandrayaan-3 lander separating from the propulsion module. Credit: ISRO.

The PM has had a busy and productive mission. While in lunar orbit for about a month, it wasn’t just taking it easy.  After the separation of the lander, the PM operated an on-board experiment, the Spectro-polarimetry of HAbitable Planet Earth (SHAPE) payload, designed to observe the Earth. Specifically, this instrument also provided scientists and engineers experience for future missions and research as its purpose was to study habitable planet-like features of Earth. These observations will be used by ISRO for future studies of exoplanets. Additionally, there was a special operation of the SHAPE payload on October 28, 2023 during the solar eclipse.

But because the spacecraft had such a precise orbit injection and optimal burn maneuvers, the amount of leftover fuel meant the engineers could do even more with the PM than originally expected. The PM was commanded to execute an orbit-raising maneuver at the Moon and then perform a Trans-Earth injection burn, which placed the PM in an Earth-bound orbit.

ISRO said the first orbit raising maneuver at the Moon was performed on October 9, 2023 to raise apolune altitude to 5,112 km from 150 km.  The Trans-Earth injection (TEI) maneuver was performed on October 13, 2023, and as its orbit was slowly raised, the PM made four Moon flybys before departing Moon on November 10.

Currently, propulsion module is orbiting Earth with an orbital period of nearly 13 days, at 27 degrees inclination. Because of this high orbit, ISRO said there is no threat of close approach with any operational Earth orbiting satellites.

ISRO said these extra operations allowed them to plan and execute trajectory maneuvers to return from Moon to Earth, as well as develop software to plan and validate the maneuvers. They also planned and executed a gravity assisted flyby between two celestial bodies and, most notably they avoided an uncontrolled crash into the Moon’s surface at the end of the life of PM, which met the requirements of creating no debris on the Moon.

Will its current high geostationary orbit be the Chandrayaan-3 PM’s final trick? Who knows? The resourceful engineers might figure out another way to make use of this multi-purpose spacecraft.

The post For its Final Trick, Chandrayaan-3 Brings its Propulsion Module to Earth Orbit appeared first on Universe Today.

Continue Reading

Trending