Connect with us

Since time immemorial, humans have gazed up at the stars and wondered if we’re alone in the universe. We have asked if there are other intelligent beings out there in the vastness of the cosmos, also known as extraterrestrial intelligence (ET). Yet, despite our best efforts, we have yet to confirm the existence of ET outside of the Earth. While the search continues, it’s fair to speculate if they might look “human” or humanoid in appearance, or if they could look like something else entirely. Here, we present a general examination and discussion with astrobiologists pertaining to what ET might look like and what environmental parameters (e.g., gravity, atmospheric makeup, stellar activity) might cause them to evolve differently than humans.

“Some body plans may be more optimal than others, in the sense that they may be more streamlined, suitable for locomotion, etc,” Dr. Manasvi Lingam, who is an astrobiologist and Assistant Professor in the Department of Aerospace, Physics, and Space Sciences at the Florida Institute of Technology, tells Universe Today. “However, if extraterrestrial technological species do exist, they might take a number of forms. We cannot rule out humanoid species, but I believe that one could conceive of other body plans. For example, they could have decentralized brains akin to octopuses.”

Science fiction often depicts ET as being humanoid in form: average human height, bipedal, two arms and two legs, and even the head, eyes, and brain in the same location. However, this is likely due to the human actors playing the roles, and while their physical appearance differs from species to species, the “universal” (no pun intended) understanding is the majority of interstellar species are humanoid in appearance. Therefore, as the search for ET continues at a breakneck pace, what could the species of an advanced extraterrestrial technological civilization look like? Could they be humanoid like us, or have another appearance?

“I have no idea!” Dr. Ramses Ramirez, who is an Assistant Professor in the Department of Physics at the University of Central Florida, tells Universe Today. “But it all depends on whether the evolutionary transition from single-cellular – to multi-cellular – to animals (and apes like us!) is a universal one or if it is a unique one-off that is specific to the Earth.  If the former, then they may look rather humanoid, with only slight differences (kind of like the culturally pervasive greys). Otherwise, they could literally be anything – from a hive mind to sentient beams of light. It is also possible that a highly technological species may become advanced enough to transcend evolution itself, voluntarily becoming artificial intelligence or robots.”

It is this last part that has sparked the interest of Dr. Seth Shostak, who is a Senior Astronomer at the SETI Institute and published a 2010 paper in Acta Astronautica discussing how SETI should expand their search for ET beyond exoplanets within the star’s habitable zone. In this study, he notes how biological species have limited timescales and an intelligent species who are purely comprised of artificial intelligence could offer far more avenues in terms of their existence, including being possibly immortal or capable of unlimited repair, along with likely not relying on biological environments for survival. In terms of where we should look for such forms of intelligent life, Dr. Shostak said in a 2016 interview that such species could be inhabiting locations in the Universe with lots of energy, such as the center of galaxies of where other plentiful minerals are available that are required for the species to both survive and thrive.

Dr. Shostak tells Universe Today that “any species more advanced than our own will have perfected artificial intelligence. It’s much better for venturing into space anyways. So, most of the sophisticated aliens will be synthetic intelligence.”

But could some ET be land-dwellers like us, or maybe even sea-dwellers? While life on Earth started in the oceans and eventually made its way to land, what if life on other worlds started in the oceans and stayed there? What if there are worlds that are almost entirely absent of the massive continents we see here on Earth? Could a marine environment, specifically with the lack of gravitational pull, have an influence on ET’s appearance?

Dr. Ramirez tells Universe Today, “Marine animals are (on average) able to get bigger and larger than terrestrial animals partially because the buoyancy of water helps free them from the gravitational constraints, but also because the cold sea makes heat loss more efficient. Bigger animals generate more heat, so it is better to be big in the cold ocean.” The notion of varying species types depending on land, sea, or air is also echoed by Dr. Lingam, as he notes his 2023 study exploring (sub)surface ocean worlds.

One possibility could be

Frontier Adventure

Not Getting Enough Data From Mars? Set Up A Solar System Pony Express

image

Getting data in from deep space can be difficult. Almost all of our missions that have flown into deep space use the Deep Space Network, a system of transmitters and receivers that already imposes constraints on the amount of data we can transfer from the far reaches of space. So a team led by Joshua Vander Hook, then at NASA’s Jet Propulsion Laboratory and now at a start-up called Outrider.ai, came up with a way to dramatically enhance the throughput of the DSN. In so doing, they gave it a very catchy name – the Solar System Pony Express.

Dr. Vander Hook was initially supported by a NASA Institute for Advanced Concepts (NIAC) grant in 2021. The basic concept utilizes what is known as a “cycler” orbit, where a spacecraft repeatedly orbits between two bodies in the solar system using their gravity wells to swing around in sync with when their orbits pass each other. 

In this case, the spacecraft would consist of a communications relay module that would collect high-throughput data from an observer module parked in orbit around the other body. The observer module would consistently download data from the missions operating in its local area and then, when a relay module gets close, would rapidly send all of that data to the cycling spacecraft. The cycler then returns to Earth, where another rapid download process begins, and the cycle repeats itself.

Fraser discusses some of the problems of communicating with deep space probes – especially those going to other stars.

That sounds like the Pony Express – a system in the 1800s whereby mail carriers would ride physical ponies (or horses) to deliver mail occasionally to remote outposts in the American West. In another homage to that mail carrier heritage, the team named the cycling relay satellites “data mules.”

Those data mules would have a long trip between Earth and their target destination. It might come as no surprise that in much of the literature surrounding the idea that the target destination was Mars. Buzz Aldrin, the most famous proponent of cycler orbits, suggested that cycler “castles” could effectively shuttle people and goods between Mars and Earth. But in this new configuration, instead of physical things, it would be more beneficial to ship data.

image 1
Another Depiction of how the observer / data mule interaction would go.
Credit – Marc Sanchez-Net et al.

Calculations described in a paper released last year estimate that with as little as six data mules, the network could provide a bandwidth of 1 petabyte a year from the surface of Mars while only requiring a minor allocation of time on the DSN. That would potentially allow some real-time high-definition video from the red planet, which would undoubtedly be attractive to many of the inhabitants of its nearest neighbor.

However, such high data rates come at a cost. In the case of the Solar System Pony Express, that cost is latency. The high throughput data transfer possible between the observer and a data mule, and then again from the data mule back to a receiving station on Earth, is only possible if they are in physical proximity to each other, as the network would use a type of high-throughput optical communications network. And since cycler orbits can take years, it would be years after the data was collected on the red planet that anyone could use it.

That is not a show stopper – indeed, many people would be okay with waiting for over a year for a high-definition video from Mars if that is the only way for them to see it. But it makes funding such a mission more difficult given the immediate feedback culture prevalent in many of today’s media. Give the authors credit, though – they recognize this limitation and, as all good scientists do, mention that it would be a good topic for further study.

For right now, that further study seems to be on hold. Dr. Vander Hook has moved on to other non-space-related efforts. While there has been some interest from researchers elsewhere, such as a paper from the University of Illinois, there’s currently no clear path forward for the project. But, there will always be a desire for more data transfer from farther out in the solar system. If the Pony Express is the most cost-effective way to get it at the beginning of our explorations, then don’t be surprised if this concept is resurrected sometime in the future.

Learn More:
Pascarella et al – Low-thrust trajectory optimization for the solar system pony
Did you miss our previous article…
https://mansbrand.com/a-protoplanetary-disc-has-been-found-in-another-galaxy/

Continue Reading

Frontier Adventure

A Protoplanetary Disc Has Been Found… in Another Galaxy!

eso1903a jpg

Astronomers have imaged dozens of protoplanetary discs around Milky Way stars, seeing them at all stages of formation. Now, one of these discs has been found for the first time — excitingly — in another galaxy. The discovery was made using the Atacama Large Millimeter/Submillimeter Array (ALMA) in Chile along with the , which detected the telltale signature of a spinning disc around a massive star in the Large Magellanic Cloud, located 160,000 light-years away.

“When I first saw evidence for a rotating structure in the ALMA data I could not believe that we had detected the first extragalactic accretion disc, it was a special moment,” said Anna McLeod, an associate professor at Durham University in the UK and lead author of the study published in Nature. “We know discs are vital to forming stars and planets in our galaxy, and here, for the first time, we’re seeing direct evidence for this in another galaxy.”

McLeod and her fellow researchers were doing a follow-up study on a system named HH 1177, which was located deep inside a gas cloud in the Large Magellanic Cloud LMC). In 2019, the researchers reported that in using the Very Large Telescope, they observed a jet emitted by a fledgling but massive star with a mass 12 times greater than our Sun. This was the first time such a jet has been observed in visible light outside the Milky Way, as they are usually obscured by their dusty surroundings. However, the relatively dust-free environment of the LMC allowed for HH 1177 to be observed at visible wavelengths. At nearly 33 light-years in length, it is one of the longest such jets ever observed.

eso1903a 1 jpg
This dazzling region of newly-forming stars in the Large Magellanic Cloud (LMC) was captured by the Multi Unit Spectroscopic Explorer instrument on ESO’s Very Large Telescope. The relatively small amount of dust in the LMC and MUSE’s acute vision allowed intricate details of the region to be picked out in visible light. Credit: ESO, A McLeod et al.

“We discovered a jet being launched from this young massive star, and its presence is a signpost for ongoing disc accretion,” McLeod said in an ESO press release. But to confirm that such a disc was indeed present, the team needed to measure the movement of the dense gas around the star.

The gas motion indicated that there is a radial flow of material falling onto a central disk-like structure. In their new observations, the team found that the disk exhibits signs of Keplerian rotation – which is a disk of material that obey’s Kepler’s laws of motion due to the dominance of a massive body at its center. Their observations revealed that “the rotating toroid [was] feeding an accretion disk and thus the growth of the central star,” the McLeod and team wrote in their paper. “The system is in almost all aspects comparable to Milky Way high-mass YSOs (young stellar objects) accreting gas from a Keplerian disk.

As matter is pulled towards a growing star, it cannot fall directly onto it; instead, it flattens into a spinning disc around the star. Closer to the center, the disc rotates faster, and this difference in speed is the clear evidence to show astronomers an accretion disc is present.

“The frequency of light changes depending on how fast the gas emitting the light is moving towards or away from us,” said Jonathan Henshaw, a research fellow at Liverpool John Moores University in the UK, and co-author of the study, in the ESO press release. “This is precisely the same phenomenon that occurs when the pitch of an ambulance siren changes as it passes you and the frequency of the sound goes from higher to lower.”

Massive stars like HH 1177 live fast and die hard. In the Milky Way, stars like this are challenging to observe because they are often clouded from view by the dusty material from which they form — which also obscures the disc that might be shaping around them.

“They form in heavily embedded regions full of gas and dust, such that the accretion phase typically occurs before the star has time to become exposed due to stellar feedback, whether internal or external,” the team wrote in their paper. “The primary reason for the lack of observations of extragalactic accretion disks around forming stars has been the limited spatial resolution of both ground- and space-based observatories.”

But the Large Magellanic Cloud is fundamentally different from because the stars that form there have a lower dust content than in the Milky
Did you miss our previous article…
https://mansbrand.com/a-gamma-ray-burst-disturbed-the-earths-ionosphere/

Continue Reading

Frontier Adventure

A Gamma-ray Burst Disturbed the Earth’s Ionosphere

Gamma ray burst illustration article 580x326 1 jpg

You’d think that something happening billions of light-years away wouldn’t affect Earth, right? Well, in 2002, a burst of gamma rays lasting 800 seconds actually impacted our planet. They came from a powerful and very distant supernova explosion. Its gamma-ray bombardment disturbed our planet’s ionosphere and activated lightning detectors in India.

This particular gamma-ray burst (GRB) occurred in a galaxy almost 2 billion light-years away (and took two billion years to reach us). Not only did ground-based detectors record the bombardment, but satellites sensitive to high-energy outbursts “saw” it, too. That included the European Space Agency’s International Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission. It typically records gamma-ray bursts on a daily basis, but this one—named GRB 221009A—outshone all the rest.

GRBs this strong happen (on average) about once every 10,000 years, so this was one that caught everyone’s attention. “It was probably the brightest gamma-ray burst we have ever detected,” says Mirko Piersanti, University of L’Aquila, Italy, and lead author of a paper analyzing the event.

How The Gamma-ray Burst Affected the Ionosphere

Most of the time, radiation from the Sun bombards our planet. That’s often strong enough to affect the ionosphere. That’s an atmospheric layer that bristles with electrically charged gases called plasma. It stretches from around 50 km to 950 km in altitude above the surface. There’s a “top-side ionosphere” (which lies above 350 km) and a “bottom-side ionosphere”) which lies below that. Scientists are pretty familiar with how the Sun treats this region of the atmosphere, particularly during periods of heavy solar activity.

GRB 221009A: looking back through time at a gamma-ray-burst. Courtesy ESA
GRB 221009A: looking back through time at a gamma-ray-burst. Courtesy ESA

This GRB blast triggered instruments generally reserved for studying the immense explosions in the Sun’s atmosphere known as solar flares. “Notably, this disturbance impacted the very lowest layers of Earth’s ionosphere, situated just tens of kilometers above our planet’s surface, leaving an imprint comparable to that of a major solar flare,” says Laura Hayes, research fellow and solar physicist at ESA. That imprint basically was an increase in ionization in the bottom-side ionosphere. It left an imprint in low-frequency radio signals that move between Earth’s surface and the lowest levels of the ionosphere. “Essentially, we can say that the ionosphere ‘moved’ down to lower altitudes, and we detected this in how the radio waves bounce along the ionosphere,” explained Laura.

Gamma Ray Bursts in the Data

Past GRBs bothered the bottom-side ionosphere but didn’t always disturb the topside. Scientists just assumed that by the time it reached Earth, the blast from a GRB didn’t have the “oomph” to change that part of the ionosphere. GRB 221009A proved that idea wrong. Thanks to data from the orbiting China Seismo-Electromagnetic Satellite (CSES), scientists saw a strong disturbance in the upper ionosphere. It created a strong electric field variation and was the first time scientists saw this connected to a GRB. The result is the first-ever top-side ionospheric measurement of electric field variations triggered by a gamma-ray outburst at cosmic distances.

INTEGRAL and other spacecraft continually record GRBs from around the Universe. Have they all affected our ionosphere in some way? Is there a way to find out? Now that scientists know what ionospheric effects to look for, they can search the data to find answers. Data from INTEGRAL, and CSES will be particularly useful. They should be able to correlate it with other GRBs seen since 2018. That’s when CSES was launched.

Evidence of ionospheric disturbances from GRBs goes back as far as 1988. That’s when the effects of a 1983 gamma-ray burst were first reported. Scientists now have an array of ground-based and space-based detectors—such as Swift, Fermi, MAXI, AGILE, INTEGRAL, and CSES—gave strong detections of the emissions from GRB221009A.

Implications for Future GRB Effects on Earth

This kind of disturbance
Did you miss our previous article…
https://mansbrand.com/should-we-send-humans-to-venus/

Continue Reading

Trending