Connect with us

A recent study submitted to Acta Astronautica explores the potential for using aerographite solar sails for traveling to Mars and interstellar space, which could dramatically reduce both the time and fuel required for such missions. This study comes while ongoing research into the use of solar sails is being conducted by a plethora of organizations along with the successful LightSail2 mission by The Planetary Society, and holds the potential to develop faster and more efficient propulsion systems for long-term space missions.

“Solar sail propulsion has the potential for rapid delivery of small payloads (sub-kilogram) throughout the solar system,” Dr. René Heller, who is an astrophysicist at the Max Planck Institute for Solar System Research and a co-author on the study, tells Universe Today. “Compared to conventional chemical propulsion, which can bring hundreds of tons of payload to low-Earth orbit and deliver a large fraction of that to the Moon, Mars, and beyond, this sounds ridiculously small. But the key value of solar sail technology is speed.”

Unlike conventional rockets, which rely on fuel in the form of a combustion of chemicals to exert an external force out the back of the spacecraft, solar sails don’t require fuel. Instead, they use sunlight for their propulsion mechanism, as the giant sails catch solar photons much like wind sails catching the wind when traveling across water. The longer the solar sails are deployed, the more solar photons are captured, which gradually increases the speed of the spacecraft.

For the study, the researchers conducted simulations on how fast a solar sail made of aerographite with a mass up to 1 kilogram (2.2 pounds), including 720 grams of aerographite with a cross-sectional area of 104 square meters, could reach Mars and the interstellar medium, also called the heliopause, using two trajectories from Earth known as direct outward transfer and inward transfer methods, respectively.

The direct outward transfer method for both the trip to Mars and the heliopause involved the solar sail both deploying and departing directly from a polar orbit around the Earth. The researchers determined that Mars being in opposition (directly opposite Earth from the Sun) at the time of solar sail deployment and departure from Earth would yield the best results for both velocity and travel time. This same polar orbit deployment and departure was also used for the heliopause trajectory, as well. For the inward transfer method, the solar sail would be delivered to approximately 0.6 astronomical units (AU) from the Sun via traditional chemical rockets, where the solar sail would deploy and begin its journey to either Mars or the heliopause. But how does an aerographite solar sail make this journey more feasible?

20200109 ls2 australia new guinea f840 750 1
Image taken by The Planetary Society’s LightSail 2 on 25 November 2019 during its mission orbiting the Earth. The curved appearance of the sails is from the spacecraft’s 185-degree fisheye camera lens, and the image was processed with color-correction along with removal of parts of the distortion. (Credit: The Planetary Society)

“With its low density of 0.18 kilograms per cubic meter, aerographite undercuts all conventional solar sail materials,” Julius Karlapp, who is a Research Assistant at the Dresden University of Technology and lead author of the study, tells Universe Today. “Compared to Mylar (a metallized polyester foil), for example, the density is four orders of magnitude smaller. Assuming that the thrust developed by a solar sail is directly dependent on the mass of the sail, the resulting thrust force is much higher. In addition to the acceleration advantage, the mechanical properties of aerographite are amazing.”

Through these simulations, the researchers found the direct outward transfer method and inward transfer method resulted in the solar sail reaching Mars in 26 days and 126 days, respectively, with the first 103 days being the travel time from Earth to the deployment point at 0.6 AU. For the journey to the heliopause, both methods resulted in 5.3 years and 4.2 years, respectively, with the first 103 days of the inward transfer method also being devoted to the travel time from the Earth to the deployment point at 0.6 AU, as well. The reason the heliopause is reached in a
Did you miss our previous article…
https://mansbrand.com/dark-photons-could-be-the-key-to-both-dark-matter-and-the-muon-anomaly/

Frontier Adventure

Starship | Second Flight Test

hqdefault 2

hqdefault 3

On November 18, 2023, Starship successfully lifted off at 7:02 a.m. CT from Starbase on its second integrated flight test.

While it didn’t happen in a lab or on a test stand, it was absolutely a test. What we did with this second flight will provide invaluable data to continue rapidly developing Starship.

The test achieved a number of major milestones, helping us improve Starship’s reliability as SpaceX seeks to make life multiplanetary. The team at Starbase is already working final preparations on the vehicles slated for use in Starship’s third flight test.

Congratulations to the entire SpaceX team on an exciting second flight test of Starship!

Follow us on X.com/SpaceX for continued updates on Starship’s progress

Did you miss our previous article…
https://mansbrand.com/for-its-final-trick-chandrayaan-3-brings-its-propulsion-module-to-earth-orbit/

Continue Reading

Frontier Adventure

For its Final Trick, Chandrayaan-3 Brings its Propulsion Module to Earth Orbit

F3t7yPTaYAAeyJ6 1024x1024 1 jpg

On August 23, ISRO’s Vikram lander detached from its propulsion module and made a soft landing near the Moon’s south pole region. The lander then deployed its Pragyan rover, and for two weeks the endearing little solar-powered rover performed marvelously, detecting water ice and characterizing the makeup of the lunar regolith before succumbing to the darkness and cold of the lunar night.

But since the rover mission ended, the propulsion module that brought it to the Moon has made a detour, performing a series of complex maneuvers that took it from a tight lunar orbit back to Earth orbit. This was possible because the module still had more than 100 kg of fuel, allowing scientists to conduct additional maneuvers and experiments.

Right now, the propulsion module (PM) is orbiting Earth at an altitude of 115,000 km (71,500 miles), well above geostationary orbit. ISRO said the mission team decided to use the available fuel in the propulsion module to derive additional information for future lunar missions. More specifically, this demonstration gave them the chance to test mission operation strategies for a future sample return mission.

F3t7yPTaYAAeyJ6 1024x1024 2 jpg
A graphic of the Chandrayaan-3 lander separating from the propulsion module. Credit: ISRO.

The PM has had a busy and productive mission. While in lunar orbit for about a month, it wasn’t just taking it easy.  After the separation of the lander, the PM operated an on-board experiment, the Spectro-polarimetry of HAbitable Planet Earth (SHAPE) payload, designed to observe the Earth. Specifically, this instrument also provided scientists and engineers experience for future missions and research as its purpose was to study habitable planet-like features of Earth. These observations will be used by ISRO for future studies of exoplanets. Additionally, there was a special operation of the SHAPE payload on October 28, 2023 during the solar eclipse.

But because the spacecraft had such a precise orbit injection and optimal burn maneuvers, the amount of leftover fuel meant the engineers could do even more with the PM than originally expected. The PM was commanded to execute an orbit-raising maneuver at the Moon and then perform a Trans-Earth injection burn, which placed the PM in an Earth-bound orbit.

ISRO said the first orbit raising maneuver at the Moon was performed on October 9, 2023 to raise apolune altitude to 5,112 km from 150 km.  The Trans-Earth injection (TEI) maneuver was performed on October 13, 2023, and as its orbit was slowly raised, the PM made four Moon flybys before departing Moon on November 10.

Currently, propulsion module is orbiting Earth with an orbital period of nearly 13 days, at 27 degrees inclination. Because of this high orbit, ISRO said there is no threat of close approach with any operational Earth orbiting satellites.

ISRO said these extra operations allowed them to plan and execute trajectory maneuvers to return from Moon to Earth, as well as develop software to plan and validate the maneuvers. They also planned and executed a gravity assisted flyby between two celestial bodies and, most notably they avoided an uncontrolled crash into the Moon’s surface at the end of the life of PM, which met the requirements of creating no debris on the Moon.

Will its current high geostationary orbit be the Chandrayaan-3 PM’s final trick? Who knows? The resourceful engineers might figure out another way to make use of this multi-purpose spacecraft.

The post For its Final Trick, Chandrayaan-3 Brings its Propulsion Module to Earth Orbit appeared first on Universe Today.

Continue Reading

Frontier Adventure

In 1872, a Solar Storm Hit the Earth Generating Auroras from the Tropics to the Poles

apjacc6ccf2 hr 580x498 1 jpg

Imagine a solar storm generating auroral displays across the entire sky. No, we haven’t quite seen them that strong in the current solar cycle. But, back in February 1872, people around the world reported seeing brilliant northern and southern lights. The culprit? A medium-sized sunspot group that unleased a torrent of charged particles in a coronal mass ejection directed toward Earth.

As with strong space weather storms today, the long-ago event not only sent aurorae dancing across most of Earth’s skies, but it disrupted technology. It affected telegraph communications on the submarine cable in the Indian Ocean between Bombay (Mumbai) and Aden for hours. Similar disturbances were reported on the landline between Cairo and Khartoum. That presaged the damage that such storms can do to today’s power grids and satellite communications.

Nowadays scientists know quite a bit more about the solar activity that causes these storms. Back in those days, however, solar science was still in its infancy. We didn’t have globe-girdling, interconnected communications systems. And, then as now, extremely strong solar storms were relatively rare, but they could still do damage. Today, we are well aware of the threat to modern technologies. Strong solar storms can shut down power stations, stop communications, threaten the world’s financial and trade systems, and harm life. “The longer the power supply could be cut off, the more society, especially those living in urban areas, will struggle to cope,” said Hisashi Hayakawa, the lead author of a group studying ancient solar storms. “Could we maintain our life without such infrastructure? Well, let us just say that it would be extremely challenging.”

Studying an Ancient Solar Storm

The 1872 solar event was named the Chapman-Silverman storm. Recently, an international team of 22 scientists, led by Hayakawa at Nagoya University in Japan, Edward Cliver at the US National Solar Observatory, and Frédéric Clette of the Royal Observatory of Belgium studied it in great detail. Their tools were historical records coupled with modern techniques to assess the Chapman-Silverman storm from its origins on the Sun to its impact on our planet.

apjacc6ccf2 hr 580x498 2 jpg
Sketches by Italian astronomer Angelo Secchi (Pontifical Gregorian University). The top shows the disk of the Sun, and the lower images show the 1872 sunspot group in more detail. Courtesy Osservatorio Astronomico di Roma.

How do you go about finding records for a storm that far back? First, you look at sunspot records. People have long sketched sunspot groups and records go back quite far. The team scoured Belgian and Italian records of sunspots during the period. For terrestrial impacts, they used geomagnetic field measurements recorded in places as diverse as Bombay (Mumbai), Tiflis (Tbilisi), and Greenwich. Those gave them insight into the temporal evolution and intensity of the storm. Finally, they examined hundreds of accounts of visual aurorae caused by the storm, written in different languages.

apjacc6ccf10 hr 580x430 1 jpg
A Japanese drawing of the aurorae triggered by the 1872 solar event. Courtesy Shounji Temple.

“Our findings confirm the Chapman-Silverman storm in February 1872 as one of the most extreme geomagnetic storms in recent history. Its size rivaled those of the Carrington storm in September 1859 and the NY Railroad storm in May 1921,” Hayakawa said. “This means that we now know that the world has seen at least three geomagnetic superstorms in the last two centuries.
Did you miss our previous article…
https://mansbrand.com/communicating-with-a-relativistic-spacecraft-gets-pretty-weird/

Continue Reading

Trending