Connect with us

On December 25th, 2021, after many years of waiting, the James Webb Space Telescope (JWST) finally launched to space. In the sixth-month period that followed, this next-generation observatory unfurled its Sunshield, deployed its primary and secondary mirrors, aligned its mirror segments, and flew to its current position at the Earth-Sun Lagrange 2 (L2) Point. On July 12th, 2022, the first images were released and presented the most-detailed views of the Universe. Shortly thereafter, NASA released an image of the most distant galaxy ever observed (which existed just 300 million years after the Big Bang).

According to a new study by an international team of scientists, the JWST will allow astronomers to obtain accurate mass measurements of early galaxies. Using data from James Webb’s Near-Infrared Camera (NIRCam), which was provided through the GLASS-JWST-Early Release Science (GLASS-ERT) program, the team obtained mass estimates from some of the distant galaxies that were many times more accurate than previous measurements. Their findings illustrate how Webb will revolutionize our understanding of how the earliest galaxies in the Universe grew and evolved.

The research team (led by Paola Santini of the Astronomical Observatory of Rome) included members from the Instituto Nationale di Astrophysica (INAF) in Italy, the ASTRO 3D collaboration (Australia), the National Astronomical Research Institute of Thailand (ARIT), the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), the Cosmic Dawn Center (DAWN), the Niels Bohr Institute, The Carnegie Institution for Science, the Infrared Processing and Analysis Center at Caltech, and universities and institutes in the U.S., Europe, Australia, and Asia.

As they indicate in their study, stellar mass is one of the most important physical properties (if not the most) for understanding galaxy formation and evolution. It measures the total amount of stars in a galaxy, which are constantly being added through the conversion of gas and dust into new stars. Therefore, it is the most direct means of tracing a galaxy’s growth. By comparing observations of the oldest galaxies in the Universe (those more than 13 billion light years away), astronomers can study how galaxies evolved.

Unfortunately, obtaining accurate measurements of these early galaxies has been an ongoing problem for astronomers. Typically, astronomers will conduct mass-to-light (M/L) ratio measurements – where the light produced by a galaxy is used to estimate the total mass of stars within it – rather than computing the stellar masses on a source-by-source base. To date, studies conducted by Hubble of the most distant galaxies – like GN-z11, which formed about 13.5 billion years ago – were limited to the Ultraviolet (UV) spectrum.

This is because the light from these ancient galaxies experiences significant redshift by the time it reaches us. This means that as the light travels through spacetime, its wavelength is lengthened due to the expansion of the cosmos, effectively shifting it towards the red end of the spectrum. For galaxies whose redshift value (z) is seven or higher – at a distance of 13.46 light-years or more – much of the light will be shifted to the point where it is only visible in the infrared part of the spectrum. As Santini explained to Universe Today via email:

“The bulk of the stars in galaxies, those that mostly contribute to its stellar mass, emit at optical-near infrared (NIR) wavelengths… [B]y the time the light takes to travels from a distant galaxy to our telescopes, the light emitted by its stars is no more in the optical regime. E.g., for a z=7 galaxy, the light originally emitted at 0.6 micron, reaches our telescope with a wavelength of 4.8 micron. The higher the redshift (i.e. the more distant the galaxy), the stronger is this effect.”

“This implies that we need infrared detectors to measure galaxy stellar masses (the light emitted by the bulk of their stars is out of reach of the Hubble Space Telescope). The only IR telescope we had before the advent of JWST was Spitzer Space Telescope, dismissed a few years ago. However, its 85 cm mirror was not comparable with the 6.5 m mirror of JWST. Most of the distant galaxies were out of reach of Spitzer too: due to its limited sensitivity and angular resolution, they were not detected (or affected by high levels of noise) on its images.

redshiftDid you miss our previous article…
https://www.mansbrand.com/a-black-hole-can-tear-a-neutron-star-apart-in-less-than-2-seconds/

Frontier Adventure

5 Reasons You Must Backpack Idaho’s Sawtooth Mountains

Tet19 047 Me on Teton Crest Trail copy cropped 12

By Michael Lanza

Chances are that, by now, you’ve heard of Idaho’s Sawtooths—having typed that name into a search box may be the reason you’ve landed on this story. Maybe you’ve been intrigued at what you’ve heard or images you’ve seen from Idaho’s best-known mountain range. Perhaps you’ve even been there and the experience has only amplified your curiosity to see more of this range.

As someone who’s had the good fortune of having backpacked all over the country and in many other countries over the past three-plus decades, including the 10 years I spent as a field editor for Backpacker magazine and even longer running this blog, I rank the Sawtooths among the 10 best backpacking trips in America.

Tet19 047 Me on Teton Crest Trail copy cropped 13
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

Backpackers on Trail 154 to Cramer Divide in Idaho’s Sawtooths.
” data-image-caption=”Backpackers on Trail 154 to Cramer Divide in Idaho’s Sawtooths.
” data-medium-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2021/04/06230304/Saw19-024-Backpackers-on-Trail-154-to-Cramer-Divide-Sawtooth-Mountains-Idaho.jpg?fit=200%2C300&ssl=1″ data-large-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2021/04/06230304/Saw19-024-Backpackers-on-Trail-154-to-Cramer-Divide-Sawtooth-Mountains-Idaho.jpg?fit=683%2C1024&ssl=1″ src=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2021/04/06230304/Saw19-024-Backpackers-on-Trail-154-to-Cramer-Divide-Sawtooth-Mountains-Idaho-683×1024.jpg?resize=683%2C1024&ssl=1″ alt=”Backpackers on Trail 154 to Cramer Divide in Idaho’s Sawtooths.” class=”wp-image-45355″ style=”width:572px;height:auto” srcset=”https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2021/04/06230304/Saw19-024-Backpackers-on-Trail-154-to-Cramer-Divide-Sawtooth-Mountains-Idaho.jpg 683w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2021/04/06230304/Saw19-024-Backpackers-on-Trail-154-to-Cramer-Divide-Sawtooth-Mountains-Idaho.jpg 200w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2021/04/06230304/Saw19-024-Backpackers-on-Trail-154-to-Cramer-Divide-Sawtooth-Mountains-Idaho.jpg 768w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2021/04/06230304/Saw19-024-Backpackers-on-Trail-154-to-Cramer-Divide-Sawtooth-Mountains-Idaho.jpg 800w” sizes=”(max-width: 683px) 100vw, 683px” data-recalc-dims=”1″ />Backpackers on Trail 154 to Cramer Divide in Idaho’s Sawtooths.

I’ve wandered around the Sawtooths at least a couple dozen times over more than two decades, including numerous backpacking trips, dayhikes, peak scrambles, rock climbing, and backcountry skiing. While there remain peaks on my list to climb, a few trails to hike, and many lakes to leap into (or just sit beside), the Sawtooths have become my backyard mountains. I feel at home there.

This story presents the five reasons I think every backpacker should take a multi-day hike through the Sawtooths—spotlighting the characteristics of a trip there that make this place unique. I believe this argument may persuade you to go (if, somehow, the photos don’t do it).

See my e-book “The Best Backpacking Trip in Idaho’s Sawtooth Mountains” to learn all you need to know to plan and pull off a five-day, 36-mile Sawtooths hike through the core of the Sawtooths, and my Custom Trip Planning page to learn how I can help you plan every detail of a multi-day hike there.

Please share your thoughts or experiences there in the comments section at the bottom of this story. I
Did you miss our previous article…
https://mansbrand.com/the-venerable-hubble-space-telescope-keeps-delivering/

Continue Reading

Frontier Adventure

The Venerable Hubble Space Telescope Keeps Delivering

NGC 4753 dust lanes zoom 1024x469 1

The world was much different in 1990 when NASA astronauts removed the Hubble Space Telescope from Space Shuttle Discovery’s cargo bay and placed it into orbit. The Cold War was ending, there were only 5.3 billion humans, and the World Wide Web had just come online.

Now, the old Soviet Union is gone, replaced by a smaller but no less militaristic Russia. The human population has ballooned to 8.1 billion. The internet is a fixture in daily life. We also have a new, more powerful space telescope, the JWST.

But the Hubble keeps delivering, as this latest image shows.

The lenticular galaxy NGC 4753 is about 60 million light-years away. Lenticular galaxies are midway between elliptical and spiral galaxies. They have large-scale disks but only poorly defined spiral arms. NGC 4753 sees very little star formation because like other lenticulars, it’s used up most of its gas. The fact that they contain mostly older stars makes them similar to elliptical galaxies.

Among lenticulars, NGC 4753 is known for the dust lanes surrounding its nucleus. Astronomers think that spirals evolve into lenticulars in dense environments because they interact with other galaxies and with the intergalactic medium. However, NGC 4753 is in a low-density environment. Its environment and complex structure make it a target for astronomers to test their theories of galaxy formation and evolution.

This Hubble image is the sharpest ever taken of NGC 4753, revealing its intriguing complexity and highlighting the space telescope’s impressive resolving power.

Astronomers think that NGC 4753 is the result of a merger with a dwarf galaxy over one billion years ago. The dwarf galaxy was gas-rich, and NGC 4753's distinct dust rings probably accreted from the merger. NGC 4753's powerful gravity then shaped the gas into the complex shapes we see in this image. Image Credit: ESA/Hubble & NASA, L. Kelsey
Astronomers think that NGC 4753 is the result of a merger with a dwarf galaxy over one billion years ago. The dwarf galaxy was gas-rich, and NGC 4753’s distinct dust rings probably accreted from the merger. NGC 4753’s powerful gravity then shaped the gas into the complex shapes we see in this image. Image Credit: ESA/Hubble & NASA, L. Kelsey

NGC 4763’s unique structure results from a merger with a dwarf galaxy about 1.3 billion years ago. The video below from NOIRlab explains what happened.

NGC 4753 also hosts two known Type 1a supernovae, which are important because they help astronomers study the expansion of the Universe. They serve as standard candles, an important rung in the cosmic distance ladder.

Galaxies like NGC 4753 may not be rare, but the viewing angle plays a key role in identifying them. Our edge-on view of the galaxy makes its lenticular form clear. We could be seeing others like it from different angles that obscure its nature.

This is a model of NGC 4753, as seen from various viewing orientations. From left to right and top to bottom, the angle of the line of sight to the galaxy's equatorial plane ranges from 10° to 90° in steps of 10°. Although galaxies similar to NGC 4753 may not be rare, only certain viewing orientations allow for easy identification of a highly twisted disk. This infographic is a recreation of Figure 7 from a 1992 research paper.
This is a model of NGC
Did you miss our previous article…
https://mansbrand.com/juno-reveals-secrets-about-europas-icy-surface/

Continue Reading

Frontier Adventure

Juno Reveals Secrets About Europa’s Icy Surface

galileo feature 1024x576 1

Europa has always held a fascination to me. I think it’s the concept of a world with a sub-surface ocean and the possibility of life that has inspired me and many others. In September 2022, NASAs Juno spacecraft made a flyby, coming within 355 kilometres of the surface. Since the encounter, scientists have been exploring the images and have identified regions where brine may have bubbled to the surface. Other images revealed possible, previously unidentified steep-walled depressions up to 50km wide, this could be caused by a free-floating ocean! 

Juno was launched to Jupiter on 5 August 2011. It took off from the Cape Canaveral site on board an Atlas V rocket and travelled around 3 billion kilometres. It arrived at Jupiter on 4 July 2016 and in September 2022 made its closest flyby of Europa. The frozen world is the second of the four Galilean satellites that were discovered by Galileo over 400 years ago. Visible in small telescopes, the true nature of the moon is only detectable by visiting craft like Juno. 

galileo feature 1024x576 2
Artist’s impression of NASA’s Galileo space probe in orbit of Jupiter. Credit: NASA

During its close fly-by, one of the onboard cameras known as Juno-Cam took the highest resolution images of the moon since Galileo took a flyby in 2000. The images supported the long held theory that the icy crusts at the north and south poles are not where they used to be. Another instrument on board, known as the Stellar Reference Unit (SRU), revealed possible activity resembling plumes where brine may have bubbled to the surface.

The ground track over Europa that was followed by Juno enabled imaging around the equatorial regions. The images revealed the usual, expected blocks of ice, walls, ridges and scarps but also found something else. Steep walled depressions that measured 20 to 50 kilometres across were also seen and they resembled large ovoid pits. 

Solar panels
One of Juno’s enormous solar panels, unfurled on Earth. NASA/JPL. SWrI

The observations of the meanderings of the north/south polar ice and the varied surface features all point towards an outer icy shell that is free-floating upon the sub surface ocean. This can only happen if the outer shell is not connected to the rocky interior. When this happens, there are high levels of stress on the ice which then causes the fracture pattern witnessed. The images represent the first time such patterns have been seen in the southern hemisphere, the first evidence of true polar wandering.

The images from the SRU surprisingly provided the best quality images. It was originally designed to detect faint light from stars for navigation. Instead, the team used it to capture images when Europa was illuminated by the gentle glow of sunlight reflected from Jupiter. It was quite a novel approach and allowed complex features to become far more pronounced than before. Intricate networks of ridges criss-crossing the surface were identified along with dark stains from water plumes. One feature in particular stood out, nicknamed ‘the Platypus’, it was a 37 kilometre by 67 kilometre region shaped somewhat like a platypus.

Source : NASA’s Juno Provides High-Definition Views of Europa’s Icy Shell

The post Juno Reveals Secrets About Europa’s Icy Surface appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/webb-sees-black-holes-merging-near-the-beginning-of-time/

Continue Reading

Trending