Connect with us

Are you the type of person who is always forgetting things? Or are you someone who knows exactly what to pack but doesn’t know how best to organize it all? If either of these scenarios sounds familiar, then this ultimate travel checklist is for you. Here are some tips that will help ease your packing process and allow you to travel with less stress.

1) Suitable Outfits
A woman Packing Clothes for travel

So when you grab your Travel Backpack, make sure you pack clothes that are comfortable and appropriate for the weather. It may be hot during the day but cool at night, so pack a sweater or jacket too. You’ll want to dress in layers as well because it can get chilly if you’re near waterfalls or other bodies of water, even when it’s sunny outside. Also, make sure your shoes are comfortable because you might be walking on uneven surfaces or through the dirt.

Whether you’re someone who knows exactly what to pack but struggles to organize it all or you’re the type of person who’s always forgetting things, this ultimate travel checklist is for you! #TravelChecklist #TravelPlanning #TravelIdeas
Click To Tweet

2) Toiletries

Toiletries are essential when it comes to your health. It would help if you never flew without packing these items in your carry-on or make sure you have enough of them for the duration of your trip. While most hotels will provide shampoo, soap and conditioner, chances are they won’t be great quality products that suit every type of hair and skin type.

3) Adequate Cash
One of the ultimate travel check list items is to get your travel funds organized

It would help if you always had a little extra cash for emergencies. It can be your downfall if you don’t research fees from ATMs abroad – or even in the U.S., these days. Most ATM withdrawals abroad will incur a hefty fee, so try to avoid traveling with too much cash and take out the money as infrequently as possible when visiting other countries. It is an excellent time to mention that you should always notify your bank and credit card companies when and where you will be traveling. Otherwise, they may flag an unusual purchase for fraud prevention purposes.

4) Self-Defense Equipment

When you are traveling, it is always a good idea to ensure your safety. It means that you should pack some self-defense equipment in case anything goes wrong. The first thing on your checklist for travel gear is pepper spray. You can use it to stop someone from attacking you, and it allows you the chance to escape. However, depending on where you are traveling, other types of self-defense equipment might work better than pepper spray. For example, in some parts of Asia, carrying a small knife is enough protection for travelers.

When packing your travel gear, make sure that you have a good flashlight on your safety gear checklist. It is the best way to help others see you if it becomes dark out and you need help or if someone attempts to attack you. In addition, having some light source can also be a self-defense weapon in case an attacker tries anything during the nighttime hours. 

Finally, it is important to include personal alarms on your checklist for traveling. These tiny devices emit a loud noise when you activate them, which helps scare off an attacker. If you are traveling alone at night,
Did you miss our previous article…
https://www.mansbrand.com/by-using-dashcams-and-security-cameras-astronomers-were-able-to-track-down-the-location-of-a-meteorite/

Click to comment

You must be logged in to post a comment Login

Leave a Reply

Frontier Adventure

Europa Clipper Could Help Discover if Jupiter’s Moon is Habitable

europa crust scaled e1701714222387 jpg

Since 1979, when the Voyager probes flew past Jupiter and its system of moons, scientists have speculated about the possibility of life within Europa. Based on planetary modeling, Europa is believed to be differentiated between a rocky and metallic core, an icy crust and mantle, and a warm water ocean up to 100 km (62 mi) in depth. Scientists theorize that this ocean is maintained by tidal flexing, where interaction with Jupiter’s powerful gravitational field leads to geological activity in Europa’s core and hydrothermal vents at the core-mantle boundary.

Investigating the potential habitability of Europa is the main purpose of NASA’s Europa Clipper mission, which will launch on October 10th, 2024, and arrive around Jupiter in April 2030. However, this presents a challenge for astrobiologists since the habitability of Europa is dependent on many interrelated parameters that require collaborative investigation. In a recent paper, a team of NASA-led researchers reviewed the objectives of the Europa Clipper mission and anticipated what it could reveal regarding the moon’s interior, composition, and geology.

The team consisted of researchers from the Johns Hopkins University Applied Physics Laboratory (JHUAPL), the Beyond Center at Arizona State University, the Woods Hole Oceanographic Institution (WHOI), Honeybee Robotics, the Southwest Research Institute (SwRI), the Planetary Science Institute (PSI), the Lunar and Planetary Laboratory (LPL), NASA’s Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL), and multiple universities. Their paper, “Investigating Europa’s Habitability with the Europa Clipper,” recently appeared in Space Science Reviews.

europa crust scaled e1701714222387 1 jpg
Could shallow lakes be locked away in Europa’s crust? Europa Clipper will find out. Credit: NASA

What is “Habitability”?

When it comes to the search for life beyond Earth (aka. astrobiology), all of humanity’s efforts are currently focused on Mars. This will change in the coming years as missions destined for the outer Solar System conduct detailed studies of “Ocean Worlds” – icy bodies with interior oceans. This includes Europa, Ganymede, Titan, Enceladus, Triton, and possibly Pluto and Charon. The Europa Clipper will be the first of these missions to arrive – followed by the ESA’s JUpiter ICy moons Explorer (JUICE) in 2031. It will spend the next four years orbiting Jupiter and making close flybys of Europa, studying its surface and interior with its advanced suite of instruments. As the Europa Study Team summarized in their 2012 report:

“Jupiter’s moon Europa is one the most promising candidates for hosting life today among ocean worlds in the Solar System. In its investigation of Europa’s habitability, the Europa Clipper mission seeks to understand the provenance of water, essential chemical elements and compounds, and energy, and how they might combine to make this moon’s environments suitable to support life.”

As the NASA-led team indicated in their study, the purpose of the Europa Clipper mission is not to detect life itself but to assess Europa’s ability to support life as we know it. This will consist of confirming (or refuting) the existence of Europa’s interior ocean and determining if it possesses the necessary chemical and energy sources for life to thrive. However, one of the main challenges in investigating the moon’s habitability is the nature of the concept itself. Nevertheless, the relevant parameters include hospitable temperatures, pressure, pH, salinity, and the presence of a solvent (such as water).

Steven D. Vance, the Deputy Section Manager for the Planetary Interiors and Geophysics Group at NASA’s Jet Propulsion Laboratory (JPL), was also the paper’s lead author. As he explained to Universe Today via email:

“Habitability is the potential for supporting life, but not necessarily the presence of life. Some environments are more habitable than others. For example, a lush rainforest provides
Did you miss our previous article…
https://mansbrand.com/nasas-interstellar-mapping-probe-prepares-for-a-2025-launch/

Continue Reading

Frontier Adventure

NASA’s Interstellar Mapping Probe Prepares for a 2025 Launch

two helio models 1024x373 1 jpg

Engineers at NASA have completed an important milestone in developing the Interstellar Mapping and Acceleration Probe (IMAP) spacecraft. It’s now moving from development and design to the assembly, testing, and integration phase, targeting a launch in late Spring 2025. After launch, the spacecraft will fly to the Earth-Sun L1 Lagrange Point and analyze how the Sun’s solar wind interacts with charged particles originating from outside the Solar System.

IMAP will follow up on discoveries and insights from the two Voyager spacecraft and the Interstellar Boundary Explorer (IBEX) and will help investigate two of the most important overarching issues in heliophysics: the energization of charged particles from the Sun and the interaction of the solar wind at its boundary with interstellar space.

The mission will map the boundaries of the heliosphere — the electromagnetic bubble surrounding and protecting our solar system — and help researchers better understand the boundary of the heliosphere.  This region is where the constant flow of particles from our Sun, called the solar wind, collides with material from the rest of the galaxy. This collision limits the amount of harmful cosmic radiation entering the heliosphere.  

two helio models 1024x373 2 jpg
An updated model (left) suggests the shape of the Sun’s bubble of influence, the heliosphere, may be a deflated croissant shape, rather than the long-tailed comet shape suggested by other research (right). The white lines represent the solar magnetic field, while the red lines represent the interstellar magnetic field. Image Credits Opher, et al

It will also help settle the debate on the actual shape of the heliosphere. A study in 2020, using data from several spacecraft, suggested that the Sun’s bubble of influence may be a deflated croissant shape, rather than the long-tailed comet shape that has previously been

The spacecraft will be positioned about 1.5 million km (1 million miles) from Earth and will collect and analyze particles that make it through to help chart and understand the range of particles in interplanetary space.  

The milestone the IMAP mission recently met is called Key Decision Point D, which allows the mission to move from development and design to the testing and integration phase. The targeted launch date was moved back one months, from late April to May 2025 to ensure that the project team has the adequate resources to “address risks and technical complexities during system integration and testing,” NASA said in a recent mission blog post.

The spacecraft is currently being assembled inside the clean room at the Johns Hopkins Applied Physics Lab in Laurel, Maryland. There is a live, 24-hour feed where you can watch the assembly, integration, and testing.

During the next few months, engineers will install the electronics, communications systems, thermal systems, propulsion, batteries, and many more complex systems to make the spacecraft work. Additionally, all 10 of IMAP’s instruments will soon start to arrive from around the world and be integrated with the spacecraft one by one. Finally, the spacecraft will begin testing before being sent to NASA’s Goddard Space Flight Center for final testing prior to launch.

Learn more about the mission and the huge team of universities and organizations that are part of IMAP at the mission website.

The post NASA’s Interstellar Mapping Probe Prepares for a 2025 Launch appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/does-betelgeuse-even-rotate-maybe-not/

Continue Reading

Frontier Adventure

Does Betelgeuse Even Rotate? Maybe Not

Betelgeuse pulsating UV HST jpeg

Betelgeuse is the well known red giant star in the corner of Orion the hunter. The name translated in some languages means ‘armpit of the giant’ which I think of all the star names, is simply the best! Betelgeuse has been fascinating observers of late not only because it unexpectedly faded a few years ago but more recently a study shows it’s super fast rotational speed which is, when compared to other supergiants, is like nothing seen before. 

One of the brightest stars in the northern hemisphere sky, in fact the tenth brightest, Betelgeuse has a stunning red colour. It is a semi regular variable star which means there is some regularity to its varied light output but there are occasions, perhaps lasting between 20 and 2000 days where the variation is interrupted. If Betelgeuse were placed in the Sun’s position then its visible surface would more than likely extend beyond the orbit of Mars and swallow up everything in between. 

Image showing the variability of Betelgeuse
1998/9 UV HST images of Betelgeuse showing asymmetrical pulsations with corresponding spectral line profiles (Credit :  STScI, NASA, ESA)

Like all stars, Betelgeuse rotates but a recent study using the Atacama Large Milimeter Array (ALMA) has showed that Betelgeuse is rotating faster than expected. Cool stars like Betelgeuse expand as they evolve and to conserve momentum the rotation must slow.  It is possible that mass loss due to stellar winds decreases rotation speeds further. The current theory predicts that red giants rotate at around 1km per second while red supergiants a little less than 0.1km per second. 

Image showing two of the receivers of the ALMA array in the Atacama Desert.
Two of the Atacama Large Millimeter/submillimeter Array (ALMA) 12-metre antennas (Credit : Iztok Bon?ina/ESO)

Current theory aside it seems there have been a number of observations of at least a few hundred giant stars rotating faster. Betelgeuse in particular has shown faster than expected rotation. Somewhat usefully, it’s proximity to Earth has meant its surface can be resolved and accurate measurements taken. Measurements showed that half of the visible hemisphere was blue shifted and the the other half red shifted. We can use this information to accurately calculate a rotational velocity.

When it comes to Betelgeuse, the radial velocity with ALMA was measured to be around 5.47 km per second. This value was compared against previous observations using Hubble Space Telescope and thankfully this agreed. One leading theory takes binary star evolution as a possible cause and in particular a merger with a low mass companion star. This is not an unusual process with an expected one-third of red supergiants experience stellar merger before their core collapses marking the end of their life. When it comes to red giants the team considered the impact of merging with planetary systems on the rotational velocity.

There are complications however in attaining sufficient data but the team modelled 3D radiation hydrodynamic simulations of red supergiants with properties similar to Betelgeuse. Throwing a proverbial spanner in the works, the team suggest that it is possible that the observations could be wrong and false signals have been picked up from churning convective plasma at the surface rather than the rotation of the star itself!

In an attempt to ascertain if it is possible to accurately measure the rotational speed of red giants and supergiants they had to develop new processing techniques to establish predictions that they could compare with observations of Betelgeuse. The team finally conclude that to be able to establish without doubt that Betelgeuse and other red supergiants are rotating
Did you miss our previous article…
https://mansbrand.com/5-reasons-you-must-backpack-the-teton-crest-trail-2/

Continue Reading

Trending