Connect with us

Enceladus’ status as a target in the search for life keeps rising. We’ve known for years that plumes erupting from the ocean under the moon’s icy shell contain important organic compounds related to life. Now, researchers have found another chemical in the plumes which is not only highly toxic but also critical in the appearance of life.

The Cassini spacecraft spent 13 years in the Saturn system before ending its mission in 2017. Among its many discoveries were plumes erupting from Saturn’s moon Enceladus. The images of the plumes are iconic.

But what the plumes contain is what really captured scientists’ attention. Cassini found compounds like carbon dioxide, methane, water, and ammonia. It also found salts, indicating that the ocean is salty. Now, researchers working with the Cassini data have identified hydrogen cyanide in the plumes.

Most of us know that hydrogen cyanide is extremely poisonous. It played a role in one of humanity’s most heinous episodes. But hydrogen cyanide (HCN) has another side to it, one that scientists think is important for the appearance of life. It may act as a precursor to nucleic acids and amino acids.

“Our work provides further evidence that Enceladus is host to some of the most important molecules for both creating the building blocks of life and for sustaining that life through metabolic reactions,” said Jonah Peter, a doctoral student at Harvard University. Peter is the lead author of new research published in Nature Astronomy. “Not only does Enceladus seem to meet the basic requirements for habitability, we now have an idea about how complex biomolecules could form there, and what sort of chemical pathways might be involved,” added Peter.

Saturn's moon Enceladus isn't just bright and beautiful. It has an ocean under all that ice that has chemicals necessary for life. This image shows the moon's southern region, including the 'Tiger Stripes' feature, the four roughly parallel streaks on the left of the image. This is where the plumes originate. Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team
Saturn’s moon Enceladus isn’t just bright and beautiful. It has an ocean under all that ice that has chemicals necessary for life. This image shows the moon’s southern region, including the ‘Tiger Stripes’ feature, the four roughly parallel streaks on the left of the image. This is where the plumes originate. Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team

Amino acids are important building blocks of life. They’re the basic unit of proteins, which are long chains of amino acids. There are over 500 hundred proteins in nature, but there are only 22 that are part of the genetic code. HCN is extremely versatile and plays a role in all amino acids, so its presence in Enceladus’ oceans is intriguing.

“The discovery of hydrogen cyanide was particularly exciting because it’s the starting point for most theories on the origin of life,” Peter said.

Scientists have been working with Cassini’s data for years, but previous investigations into the plumes didn’t show any HCN. “The most recently published list of neutral gas species confirmed in the plume consists of only H2O, CO2, CH4, NH3 and H2,” the authors write in their paper.

Determining what chemicals Cassini sensed in Enceladus’ was the job of the Ion and Neutral Mass Spectrometer (INMS), an important part of Cassini’s instrument suite. There are only small amounts of some of these chemicals, and they’re difficult to differentiate in the INMS’s data. “Difficulty in resolving minor plume constituents stems from the large number of plausible compounds relative to the low mass resolution of INMS.”

Scientists take the data from INMS and try and match it with models of known chemicals and ratios. That’s complex work. “Models of INMS spectra suffer from an additional complexity in that the signals produced by individual molecules are not necessarily linearly independent,” the authors explain. “As such, there may be multiple different combinations of species that appear to fit the data equally well.”

That means it took some sleuthing to find the HCN. And no matter how hard the researchers tried to find an alternative explanation for what they saw, they couldn’t.

“There
Did you miss our previous article…
https://mansbrand.com/could-there-be-a-black-hole-inside-the-sun/

Continue Reading

Frontier Adventure

Stellar Winds Coming From Other Stars Measured for the First Time

interstellar jpg

An international research team led by the University of Vienna has made a major breakthrough. In a study recently published in Nature Astronomy, they describe how they conducted the first direct measurements of stellar wind in three Sun-like star systems. Using X-ray emission data obtained by the ESA’s X-ray Multi-Mirror-Newton (XMM-Newton) of these stars’ “astrospheres,” they measured the mass loss rate of these stars via stellar winds. The study of how stars and planets co-evolve could assist in the search for life while also helping astronomers predict the future evolution of our Solar System.

The research was led by Kristina G. Kislyakova, a Senior Scientist with the Department of Astrophysics at the University of Vienna, the deputy head of the Star and Planet Formation group, and the lead coordinator of the ERASMUS+ program. She was joined by other astrophysicists from the University of Vienna, the Laboratoire Atmosphères, Milieux, Observations Spatiales (LAMOS) at the Sorbonne University, the University of Leicester, and the Johns Hopkins University Applied Physics Laboratory (JHUAPL).

Astrospheres are the analogs of our Solar System’s heliosphere, the outermost atmospheric layer of our Sun, composed of hot plasma pushed by solar winds into the interstellar medium (ISM). These winds drive many processes that cause planetary atmospheres to be lost to space (aka. atmospheric mass loss). Assuming a planet’s atmosphere is regularly replenished and/or has a protective magnetosphere, these winds can be the deciding factor between a planet becoming habitable or a lifeless ball of rock.

interstellar 1 jpg
Logarithmic scale of the Solar System, Heliosphere, and Interstellar Medium (ISM). Credit: NASA-JPL

While stellar winds mainly comprise protons, electrons, and alpha particles, they also contain trace amounts of heavy ions and atomic nuclei, such as carbon, nitrogen, oxygen, silicon, and even iron. Despite their importance to stellar and planetary evolution, the winds of Sun-like stars are notoriously difficult to constrain. However, these heavier ions are known to capture electrons from neutral hydrogen that permeates the ISM, resulting in X-ray emissions. Using data from the XXM-Newton mission, Kislyakova and her team detected these emissions from other stars.

These were 70 Ophiuchi, Epsilon Eridani, and 61 Cygni, three main sequence Sun-like stars located 16.6, 10.475, and 11.4 light-years from Earth (respectively). Whereas 70 Ophiuchi and 61 Cygni are binary systems of two K-type (orange dwarf) stars, Epsilon Eridani is a single K-type star. By observing the spectral lines of oxygen ions, they could directly quantify the total mass of stellar wind emitted by all three stars. For the three stars surveyed, they estimated the mass loss rates to be 66.5±11.1, 15.6±4.4, and 9.6±4.1 times the solar mass loss rate, respectively.

In short, this means that the winds from these stars are much stronger than our Sun’s, which could result from the stronger magnetic activity of these stars. As Kislyakova related in a University of Vienna news release:

“In the solar system, solar wind charge exchange emission has been observed from planets, comets, and the heliosphere and provides a natural laboratory to study the solar wind’s composition. Observing this emission from distant stars is much more tricky due to the faintness of the signal. In addition to that, the distance to the stars makes it very difficult to disentangle the signal emitted by the astrosphere from the actual X-ray emission of the star itself, part of which is “spread” over the field-of-view of the telescope due to instrumental effects.”

608c8c49dc jpeg
XMM-Newton X-ray image of the star 70 Ophiuchi (left) and
Did you miss our previous article…
https://mansbrand.com/how-to-know-how-hard-a-hike-will-be-3/

Continue Reading

Frontier Adventure

How to Know How Hard a Hike Will Be

Tet19 047 Me on Teton Crest Trail copy cropped 16 jpg

By Michael Lanza

“How hard will that hike be?” That’s a question that
all dayhikers and backpackers, from beginners to experts, think about all the
time—and it’s not always easy to answer. But there are ways of evaluating the
difficulty of any hike, using readily available information, that can greatly
help you understand what to expect before you even leave home. Here’s
how.

No matter how relatively easy or arduous the hike you’re considering, or where you fall on the spectrum of hiking experience or personal fitness level, this article will tell you exactly how to answer that question—and which questions to ask and what information to seek to reach that answer. This article shares what I’ve learned over four decades of backpacking and dayhiking, including the 10 years I spent as a field editor for Backpacker magazine and even longer running this blog, and this knowledge can help ensure that you and your companions or your family don’t get in over your heads.

Whether you’re new to dayhiking or backpacking, a
parent planning a hike with young kids, or a fit and experienced dayhiker or
backpacker contemplating one of the toughest hikes you’ve ever attempted, it’s
important to have a good sense of what you’ll face on a new and unfamiliar hike
and whether it’s within your abilities.

Tet19 047 Me on Teton Crest Trail copy cropped 17 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

A backpacker hiking the Dawson Pass Trail in Glacier National Park.
” data-image-caption=”Pam Solon backpacking the Dawson Pass Trail in Glacier National Park. Click photo to read about backpacking in Glacier.
” data-medium-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park-1024×683.jpg?resize=900%2C600&ssl=1″ alt=”A backpacker hiking the Dawson Pass Trail in Glacier National Park.” class=”wp-image-61235″ srcset=”https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 1024w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 300w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 768w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 150w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2023/12/06224534/Gla7-117-Pam-Solon-backpacking-the-Dawson-Pass-Trail-in-Glacier-National-Park.jpg 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />Pam Solon backpacking the Dawson Pass Trail in Glacier National Park. Click photo to read about backpacking in Glacier.

Exceeding your limits or those of someone with you can
invite unwanted consequences—and the person with the least stamina,
abilities, or experience often dictates any party’s pace, limits, and outcomes.
Those consequences
Did you miss our previous article…
https://mansbrand.com/the-12-best-down-jackets-of-2024/

Continue Reading

Frontier Adventure

The 12 Best Down Jackets of 2024

Tet19 047 Me on Teton Crest Trail copy cropped 14 jpg

By Michael Lanza

Whatever you need an insulated jacket for, there’s a down or synthetic puffy for your needs, within your budget. And whether you want a puffy jacket for outdoor activities like backpacking, camping, skiing, climbing, and hut treks, or just to keep you warm around town or at outdoor sporting events, this review will help you figure out how to choose the right jacket for your purposes, and it spotlights the best down and synthetic insulated jackets available today.

I selected the jackets covered in this review after extensive testing on backpacking, camping, backcountry ski touring, climbing and other backcountry trips. I’ve field-tested dozens of insulated jackets over nearly three decades of testing and reviewing gear, formerly as the lead gear reviewer for Backpacker magazine for 10 years and even longer running this blog.

Technology has blurred the traditional lines between down and synthetics, with water-resistant down that traps heat even when wet—all but eliminating the weakness that had long been the Achilles heel of down—and synthetic insulation materials that approach the warmth-to-weight ratio and compressibility of down.

If you’d prefer, scroll past my buying tips to dive immediately into the jacket reviews.

If you have a question for me or a comment on this review, please leave it in the comments section at the bottom of this story. I try to respond to all comments.

Tet19 047 Me on Teton Crest Trail copy cropped 15 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-guides to classic backpacking trips. Click here to learn how I can help you plan your next trip.

The Black Diamond Approach Down Hoody.
” data-image-caption=”The Black Diamond Approach Down Hoody in the Grand Canyon.
” data-medium-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1-1024×683.jpg?resize=900%2C600&ssl=1″ alt=”The Black Diamond Approach Down Hoody.” class=”wp-image-52287″ srcset=”https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 1024w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 300w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 768w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 150w, https://tbo-media.sfo2.digitaloceanspaces.com/wp-content/uploads/2022/04/06225653/Black-Diamond-Approach-Down-Hoody-hood-up-1.jpg 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />The Black Diamond Approach Down Hoody in the Grand Canyon.

How to Choose a Synthetic or Down Jacket

Insulated jackets today differ not only in type and amount of insulation, but also in water resistance, breathability, and as always, design features like the hood and pockets. When choosing between down and synthetic models, consider the usual conditions and temperatures in which you’ll use it—in other words, how wet and cold you expect to get, and your body type (how easily you get cold)—as well as the seasonal and activity versatility you require. Some questions to
Did you miss our previous article…
https://mansbrand.com/finally-an-explanation-for-the-moons-radically-different-hemispheres/

Continue Reading

Trending