Connect with us

At the tender age of 26, Fabio Wibmer is a phenomenon. After winning the Downhill Mountain Biking Championships in 2016, he turned his attention to online street trials. And when Fabio takes to the streets with his bike and a camera, people pay attention.

So, why not join over a billion others worldwide and lose yourself in a spot of Austrian urban freeriding. Watch as Fabio turns Vienna into his very own adventure playground, even finding time for a quick trip into the Danube…

 

Wired For Adventure is more than a magazine. It’s a feeling. A way of life. A state of mind. Get the latest volume here.

WFA Vol 8 banner

The post Watch: Vienna becomes his adventure playground appeared first on Wired For Adventure.

Did you miss our previous article…
https://www.mansbrand.com/americas-top-10-best-backpacking-trips/

Click to comment

You must be logged in to post a comment Login

Leave a Reply

Frontier Adventure

If Warp Drives are Impossible, Maybe Faster Than Light Communication is Still on the Table?

350px Alcubierre

I’m sure many readers of Universe Today are like me, fans of the science fiction genre. From the light sabres of Star Wars to the neuralyzer of Men in Black, science fiction has crazy inventions aplenty and once science fiction writers dream it, scientists and engineers try and create it. Perhaps the holy grail of science fiction creations is the warp drive from Star Trek and it is fair to say that many have tried to work out if it is even possible to travel faster than the speed of light. To date, alas, to no avail but if the warp drive eludes us, what about faster than light communication! 

Let’s start with the warp drive.  The concept is a drive that can propel a spacecraft at speeds in excess of the speed of light. According to the Star Trek writers, the speed was described in factors of warp speed where they are converted to multiples of the speed of light by multiplication with the cubic function of the warp factor itself! Got it! Don’t worry, it’s not crucial to this article. Essentially ‘warp 1’ is equivalent to the speed of light, ‘warp 2’ is eight times speed of light and ‘warp 3’ is 27 times the speed of light and so it goes on! Therein lies the problem; achieving faster than light travel. 

In attempts to try to understand this, numerous experiments have been undertaken, of note Bill Bertozzi at MIT accelerated electrons and observed them becoming heavier and heavier until they couldn’t be accelerated any more! Once at the speed of light, it takes an infinite amount of energy to accelerate an object further! The maximum speed he achieved was the speed of light. In other experiments, synchronised atomic clocks were taken on board airliners and found that, after travelling at high speed relative to a reference clock on Earth, time had run slower! The upshot is that the faster you go, the slower time passes and at the speed of light, time stops! If time stops, so does speed! hmmmm this is tricky. 

The science of faster than light travel aside, In a number of potential warp drive designs have surfaced like the Alcubierre Drive proposed in 1994. However, the common factor to provide the faster than light travel is something called negative energy which is required in copious amounts. The study of quantum mechanics shows that even empty space has energy and anything that has less energy than empty space has ‘negative energy’.  The problem (among many) is that no-one knows how to get negative energy in huge amounts to power the warp drives.

Two-dimensional visualization of an Alcubierre drive, showing the opposing regions of expanding and contracting spacetime that displace the central region (Credit : AllenMcC)
Two-dimensional visualization of an Alcubierre drive, showing the opposing regions of expanding and contracting spacetime that displace the central region (Credit : AllenMcC)

It seems the warp drive is some time away yet but what about faster than light communication, could that work? Accelerating macroscopic objects, like spacecraft requires high amounts of negative energy but communication, as a recent paper explains, which operates at much smaller scale requires less energy. Quite a bit less in fact, less than is contained inside a lightning bolt.  Perhaps more tantalising is that we may just be able to create small amounts of negative energy using today’s technology.

One of the ways this can be achieved is to ensure the proper configuration and distribution of negative energy to channel communication.  The paper proposes a tubular distribution of negative energy in so called hypertubes to enable the acceleration and deceleration of warp bubbles for superluminal communication.  Achieving this for long distance communication will require special devices to be designed and built but as the papers author Lorenzo Pieri concludes “it is tantalising to consider the fabrication of microchips capable of superluminal computing”.  Yes, that is an exciting proposition but the thought of firing messages out to the cosmos at speeds faster than that of light.. Just wow!

Source : Hyperwave: Hyper-Fast Communication within General Relativity

The post If Warp Drives are Impossible, Maybe Faster Than Light Communication is Still on the Table? appeared first on Universe Today.

Did you miss our previous article…
https://mansbrand.com/reader-appreciation-sale-join-the-big-outside-for-30-off/

Continue Reading

Frontier Adventure

Reader Appreciation Sale: Join The Big Outside for 30% Off

Tet19 047 Me on Teton Crest Trail copy cropped 18 jpg

Dear reader,

I love the holidays, partly because I make a point of spending a lot of time outside with family and friends. But it’s also a time when I reflect on how much I enjoy my lifestyle—and how much I appreciate readers like you who follow and support my blog. To show my appreciation, I have a special gift for you.

Right now, I’m offering you 30% off the cost of a one-year subscription to The Big Outside.

That means you get full access to all stories at my blog—including my many stories about the trips I’ve taken, with my expert tips on planning them—for $41.97 instead of the usual cost of $59.95 for a full year, or just $3.50 a month.

That’s the biggest discount I offer on a subscription all year—just in time to start researching your trips for next year. Don’t miss out!

Go to my Join page now and click on the Subscribe button under the Annual subscription option (Best Value: $4.99/Month). Enter discount code TBO30 and the price will reset to $41.97. Then just fill out the form and complete the purchase. The 30% discount applies only to a one-year subscription. You also get one free or deeply discounted e-guide, a $12.95 value; I’ll personally email you the discount code for that after you subscribe.

Go to my Join page now and subscribe for a year for just $3.50 a month!

Tet19 047 Me on Teton Crest Trail copy cropped 19 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-guides to classic backpacking trips. Click here to learn how I can help you plan your next trip.

Michael Lanza of The Big Outside above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming.
” data-image-caption=”Me above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming; and in Death Hollow in southern Utah (lead photo, above).
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?fit=300%2C200&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?fit=900%2C600&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=900%2C600&ssl=1″ alt=”Michael Lanza of The Big Outside above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming.” class=”wp-image-61100″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=1024%2C683&ssl=1 1024w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=300%2C200&ssl=1 300w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=768%2C512&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?resize=150%2C100&ssl=1 150w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2022/11/Wind9-53-Me-above-Macon-Lake-and-Washakie-Lake-on-the-Washakie-Pass-Trail-in-the-Wind-River-Range-WY.jpg?w=1200&ssl=1 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />Me above Macon Lake and Washakie Lake on the Washakie Pass Trail in the Wind River Range, Wyoming; and in Death Hollow in southern Utah (lead photo, above).

Are you already
Did you miss our previous article…
https://mansbrand.com/the-early-universe-had-no-problem-making-barred-spiral-galaxies/

Continue Reading

Frontier Adventure

The Early Universe Had No Problem Making Barred Spiral Galaxies

heic0611b 580x580 1 jpg

Spiral galaxies like the Milky Way are like cosmic snowflakes—no two are exactly alike. For many years, astronomers thought spirals couldn’t exist until the universe was about half its present age. Now, a newly discovered galaxy in the early Universe is challenging that idea.

CEERS-2112 is an early “cosmic snowflake” with spiral arms and a bar across its middle. The amazing thing is that it’s showing this structure when the Universe was only 2 billion years old. That’s about five billion years earlier than astronomers expected something like that to exist. The fact that a perfectly formed spiral exists so early tells us that our ideas about galaxy formation in early cosmic history need some re-tuning.

Surveying the Early Universe

This galaxy showed up in a survey done by the JWST called “Cosmic Evolution Early Release Science” (CEERS). It uses JWST imaging and spectroscopy to do a survey of the early Universe to find the earliest galaxy. The analysis of the CEERS-2112 galaxy was done by an international team led by astronomer Luca Constantin of the Centro de Astrobiología in Spain.

CEERS results should show astronomers the early populations of galaxies at high redshifts (distances). They will also help them estimate related star-formation conditions and black hole growth. Finally, the work should give some insight into the formation of galaxy disks and bulges. Essentially, CEERS data should add to our store of knowledge about first light and reionization (which occurred after the Big Bang) and explain the formation and evolution of early galaxies.

Early deep-field images of very distant galaxies show shreds of galaxies and irregular clumps of stars in the early Universe. That was evident in some of the first Hubble Deep-Field images. The most distant ones in the images looked more blobby and indistinct. And, some of them appeared to be colliding, which fits into the collisional model of galaxy formation.

This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF
This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. It shows some galaxies in the early Universe, (which appear as red blobs). Credit: NASA/ESA/HUDF

Forming Galaxies in the Early Universe

Prior to the Hubble and JWST eras, astronomers really felt that it would take a long time to form spiral galaxies. They often describe a hierarchical model of galaxy formation. That’s where smaller clumpy galaxies collide to form larger ones. Over time, those objects begin to develop structures like spiral arms and bars.

“In such galaxies, bars can form spontaneously due to instabilities in the spiral structure or gravitational effects from a neighboring galaxy,” according to astronomer and team member Alexander de la Vega. He is a post-doctoral researcher currently at the University of California Riverside. “In the past, when the Universe was very young, galaxies were unstable and chaotic. It was thought that bars could not form or last long in galaxies in the early universe.”

The spiral arms are likely the result of density waves moving through the galaxy. The bars also form from density waves radiating out from the center. That compresses material in the arms and bars, leading to bursts of star formation. That could explain why these regions in galaxies seem brighter, with their populations of hot young stars. All of this takes time to accomplish. That’s why astronomers suggested that it would take about half the age of the Universe to form spiral galaxies.

CEERS-2112 is Part of the Early Universe

CEERS-2112 upends the discussion about spiral formation, according to de la Vega. “Finding CEERS-2112 shows that galaxies in the early Universe could be as ordered as the Milky Way,” he said. “This is surprising because galaxies were much more chaotic in the early Universe and very few had similar structures to the Milky Way.”

stsciDid you miss our previous article…
https://mansbrand.com/apollo-samples-contain-hydrogen-hurled-from-the-sun/

Continue Reading

Trending