Connect with us

In the next decade, space agencies will expand the search for extraterrestrial life beyond Mars, where all of our astrobiology efforts are currently focused. This includes the ESA’s JUpiter ICy moon’s Explorer (JUICE) and NASA’s Europa Clipper, which will fly past Europa and Ganymede repeatedly to study their surfaces and interiors. There’s also NASA’s proposed Dragonfly mission that will fly to Titan and study its atmosphere, methane lakes, and the rich organic chemistry happening on its surface. But perhaps the most compelling destination is Enceladus and the lovely plumes emanating from its southern polar region.

Since the Cassini mission got a close-up look at these plumes, scientists have been aching to send a robotic mission there to sample them – which appear to have all the ingredients for life in them. This is not as easy as it sounds, and there’s no indication flying through plumes will yield intact samples. In a recent paper, researchers from the University of Kent examined how the velocity of a passing spacecraft (and the resulting shock of impact) could significantly affect its ability to sample water and ice within the plumes.

The research was conducted by Prof. Mark Burchell and Dr. Penny Wozniakiewicz (an Emeritus Professor and a Senior Lecturer in Space Science) from the Centre for Astrophysics and Planetary Science (CAPS), part of the School of Physics and Astronomy at the University of Kent, UK. Their work could have significant implications for missions to Icy Ocean Worlds (IOW), bodies in the outer Solar System composed predominantly of frozen water and volatiles with oceans in their interior. These bodies have become of increasing interest to scientists since it is possible some could support life.

The term “Ocean Worlds” has become common in recent years as the number of potential candidates for exploration has increased. Since the Voyager probes passed through the system in 1979, scientists have speculated about the possibility of an interior ocean within Europa based on its surface features. This included patches of “young terrain” sitting next to older, cratered terrain – indicative of regular exchanges between the surface and interior. The Voyager probes noticed similarly youthful terrain on Enceladus when they few past Saturn in 1980 and 81 (respectively).

However, it was the Cassini-Huygens mission that discovered water vapor and organic molecules venting from the Enceladus’ southern polar region in 2004. Over the next thirteen years, the Cassini orbiter conducted several more flybys of the moon, yielding additional evidence of an interior ocean and an energy source at the core-mantle boundary. These findings placed Enceladus among the “Ocean Worlds” that scientists want to examine more closely with future missions. But unlike other IOWs, Enceladus is particularly attractive because of the nature of the plumes around its south pole.

Whereas Europa also experiences plume activity, these are more sporadic and difficult to detect. Due to Europa’s higher gravity (~13% vs. 1% of Earth’s), water vapor and vented material don’t reach nearly as far into space. As Burchell told Universe Today via email, collecting samples from these plumes seems relatively simple, at least in theory. “Like all IOWs, it has an internal ocean with lots of water. What is in that water is the subject of much speculation and interest,” he said. “And Enceladus ejects plumes of water into space, making any space mission that wants to sample the water much easier – you can just fly through the plume.”

However, in the realm of practice (as always), things get a little more complicated. Depending on how fast a mission is traveling, the impact it will inflict upon plume material will vary considerably. As Burchell explains, this could jeopardize the very samples a mission was trying to obtain:

“The problem with collecting samples at speed is that a lot of testing has been done with metal and mineral projectile, but less is known about the response of organics to the high-speed impacts. The bonds in the organics will break, but at what speed? And which bonds first? So what you end up with for analysis may not be what came out of Enceladus. But with what biases? What degree of alteration? Understanding this is essential to any successful collection of samples.”

enceladus cross section

Continue Reading

Frontier Adventure

Juno Reveals a Giant Lava Lake on Io

JNCE 2024034 58C00025 V01.point

NASA’s Juno spacecraft came within 1,500 km (930 miles) of the surface of Jupiter’s moon Io in two recent flybys. That’s close enough to reveal new details on the surface of this moon, the most volcanic object in the Solar System. Not only did Juno capture volcanic activity, but scientists were also able to create a visual animation from the data that shows what Io’s 200-km-long lava lake Loki Patera would look like if you could get even closer. There are islands at the center of a magma lake rimmed with hot lava. The lake’s surface is smooth as glass, like obsidian.

“Io is simply littered with volcanoes, and we caught a few of them in action,” said Juno principal investigator Scott Bolton during a news conference at the European Geophysical Union General Assembly in Vienna, Austria. “There is amazing detail showing these crazy islands embedded in the middle of a potentially magma lake rimmed with hot lava. The specular reflection our instruments recorded of the lake suggests parts of Io’s surface are as smooth as glass, reminiscent of volcanically created obsidian glass on Earth.”

This animation is an artist’s concept of Loki Patera, a lava lake on Jupiter’s moon Io, made using data from the JunoCam imager aboard NASA’s Juno spacecraft. With multiple islands in its interior, Loki is a depression filled with magma and rimmed with molten lava. Credit: NASA/JPL-Caltech/SwRI/MSSS

Just imagine if you could stand by the shores of this lake – which would be a stunning view in itself. But then, you could look up and see the giant Jupiter looming in the skies above you.

Juno made the two close flybys of Io in December 2023 and February 2024. Images from Juno’s JunoCam included the first close-up images of the moon’s northern latitudes. Undoubtedly, Io looks like a pizza – which has been the conclusion since our first views of this moon, when Voyager 1 flew through the Jupiter system in March 1979. The mottled and colorful surface comes from the volcanic activity, with hundreds of vents and calderas on the surface that create a variety of features. Volcanic plumes and lava flows across the surface show up in all sorts of colors, from red and yellow to orange and black. Some of the lava “rivers” stretch for hundreds of kilometers.

JNCE 2024034 58C00025 V01.point 1
Io’s sub-Jovian hemisphere is revealed in detail for the first time since Voyager 1 flew through the Jupiter system in March 1979, during the Juno spacecraft’s 58th perijove, or close pass, on February 3, 2024. This image shows Io’s nightside illuminated by sunlight reflected off Jupiter’s cloud tops. Several surface changes are visible include a reshaping of the compound flow field at Kanehekili (center left) and a new lava flow to the east of Kanehekili. This image has a pixel scale of 1.6 km/pixel. Credit : NASA/SwRI/JPL/MSSS/Jason Perry.

Juno scientists were also able to re-create a spectacular feature on Io, a spired mountain that has been nicknamed “The Steeple.” This feature is between 5 and 7 kilometers (3-4.3 miles) in height. It’s hard to comprehend the type of volcanic activity that could have created such a stunning landform.

Created using data collected by the JunoCam imager aboard NASA’s Juno during flybys in December 2023 and February 2024, this animation is an artist’s concept of a feature on the Jovian moon Io that the mission science team nicknamed “Steeple Mountain.” Credit: NASA/JPL-Caltech/SwRI/MSSS

Speaking of volcanic activity, two recent papers have come to a jaw-dropping conclusion about Io: this moon has been erupting since the dawn of the Solar System.

All the volcanic on Io is activity is driven by tidal heating. Io is in an orbital resonance with two other large moons of Jupiter, Europa and Ganymede.

“Every time Ganymede orbits Jupiter once, Europa orbits twice, and Io orbits four times,” explained the authors of a paper published in the Journal of Geophysical Research: Planets, led by Ery Hughes of GNS Science in New Zealand. “This situation causes tidal heating in Io (like how the Moon causes ocean tides on Earth), which causes the volcanism.”

However, scientists haven’t known how long this resonance has been occurring and whether what we observe today is what has always been happening in the Jupiter system. This is because volcanism renews Io’s surface almost

Continue Reading

Frontier Adventure

Artemis Astronauts Will Deploy New Seismometers on the Moon

fiber.width 450 193x250 1

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers to detect possible Moon quakes. These instruments monitored lunar activity for eight years and gave planetary scientists an indirect glimpse into the Moon’s interior. Now, researchers are developing new methods for lunar quake detection techniques and technologies. If all goes well, the Artemis astronauts will deploy them when they return to the Moon.

fiber.width 450 193x250 2
Fiber optic cable is the heart of a seismology network to be deployed on the Moon by future Artemis astronauts.

The new approach, called distributed acoustic sensing (DAS), is the brainchild of CalTech geophysics professor Zhongwen Zhan. It sends laser beams through a fiber optic cable buried just below the surface. Instruments at either end measure how the laser light changes during the shake-induced tremors. Basically Zhan’s plan turns the cable into a sequence of hundreds of individual seismometers. That gives precise information about the strength and timing of the tremors. Amazingly, a 100-kilometer fiber optic cable would function as the equivalent of 10,000 seismometers. This cuts down on the number of individual seismic instruments astronauts would have to deploy. It probably also affords some cost savings as well.

A seismometer station deployed on the Moon during the Apollo 15 mission. Courtesy NASA.
A seismometer station deployed on the Moon during the Apollo 15 mission. Courtesy NASA.

DAS and Apollo on the Moon

Compare DAS the Apollo mission seismometer data and it becomes obvious very quickly that DAS is a vast improvement. In the Apollo days, the small collection of instruments left behind on the Moon provided information that was “noisy”. Essentially, when the seismic waves traveled through different parts of the lunar structure, they got scattered. This was particularly true when they encountered the dusty surface layer. The “noise” basically muddied up the signals.

Lunar seismic instruments Apollo 11214 2020 709 Fig6 HTML 436x580 1
The layout for the Apollo Lunar Seismic Profiling Experiment for the Apollo 17 mission. Courtesy Nunn, et al.

What DAS Does to Detect Quakes on the Moon

The DAS system stations laser emitters and data collectors at each end of a fiber optic cable. This allows for multiple widely spaced installations that measure light as it transits the network. The cable consists of glass strands, and each strand contains tiny imperfections. That sounds bad, but each imperfection provides a useful “waypoint” that reflects a little bit of the light back to the source. That information gets recorded as part of a larger data set. Setting up such a system of
Did you miss our previous article…
https://mansbrand.com/ice-deposits-on-ceres-might-only-be-a-few-thousand-years-old/

Continue Reading

Frontier Adventure

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

psjad3639f4 hr

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the ice was ancient when they were discovered, like in the moon’s permanently shadowed regions. But something was puzzling.

Why did some of these shadowed craters hold ice while others did not?

Ceres was first discovered in 1801 and was considered a planet. Later, it was thought to be the first asteroid ever discovered, since it’s in the main asteroid belt. Since then, our expanding knowledge has changed its definition: we now know it as a dwarf planet.

Even though it was discovered over 200 years ago, it’s only in the last couple of decades that we’ve gotten good looks at its surface features. NASA’s Dawn mission is responsible for most of our knowledge of Ceres’ surface, and it found what appeared to be ice in permanently shadowed regions (PSRs.)

New research shows that these PSRs are not actually permanent and that the ice they hold is not ancient. Instead, it’s only a few thousand years old.

The new research is titled “History of Ceres’s Cold Traps Based on Refined Shape Models,” published in The Planetary Science Journal. The lead author is Norbert Schorghofer, a senior scientist at the Planetary Science Institute.

“The results suggest all of these ice deposits must have accumulated within the last 6,000 years or less.”

Norbert Schorghofer, senior scientist, Planetary Science Institute.

Dawn captured its first images of Ceres while approaching the dwarf planet in January 2015. At that time, it was close enough to capture images as good as Hubble’s. Those images showed craters and a high-albedo site on the surface. Once captured by Ceres, Dawn followed a polar orbit with decreasing altitude. It eventually reached 375 km (233 mi) above the surface, allowing it to see the poles and surface in greater detail.

“For Ceres, the story started in 2016, when the Dawn spacecraft, which orbited around Ceres at the time, glimpsed into these permanently dark craters and saw bright ice deposits in some of them,” Schorghofer said. “The discovery back in 2016 posed a riddle: Many craters in the polar regions of Ceres remain shadowed all year – which on Ceres lasts 4.6 Earth years – and therefore remain frigidly cold, but only a few of them harbor ice deposits.”

As scientists continued to study Ceres, they made another discovery: its massive Solar System neighbours make it wobble.

“Soon, another discovery provided a clue why: The rotation axis of Ceres oscillates back and forth every 24,000 years due to tides from the Sun and Jupiter. When the axis tilt is high and the seasons strong, only a few craters remain shadowed all year, and these are the craters that contain bright ice deposits,” said lead author Schorghofer.

This figure from the research shows how Ceres' obliquity has changed over the last 25,000 years. As the obliquity varies, sunlight reaches some crater floors that were thought to be PSRs. Image Credit: Schorghofer et al. 2023.
This figure from the research shows how Ceres’ obliquity has changed over the last 25,000 years. As the obliquity varies, sunlight reaches some crater floors that were thought to be PSRs. Image Credit: Schorghofer et al. 2023.

Researchers constructed digital elevation maps (DEMs) of the craters to uncover these facts. They wanted to find out how large and deep the shadows in the craters were, not just now but thousands of years ago. But that’s difficult to do since portions of these craters were in deep shadow when Dawn visited. That made it difficult to see how deep the craters were.

Robert Gaskell, also from the Planetary Science Institute, took on the task. He developed a new technique to create more accurate maps of the craters with data from Dawn’s sensitive Framing Cameras, contributed to the mission by Germany. With improved accuracy, these maps of the crater floors could be used in ray tracing to show sunlight penetrated the shadows as Ceres wobbled over thousands of years.

psjad3639f3 hr

Continue Reading

Trending