Connect with us

Published

on

Are we alone in the Universe? Could there be countless sentient life forms out there just waiting to be found? Will we meet them someday and be able to exchange knowledge? Will we even recognize them as intelligent life forms if and when we see them? Or worse, will they recognize us as intelligent life? When it comes to astrobiology, the search for life in the Universe, we don’t know what to expect. Hence, the speculation and theoretical studies into these questions are so rich and varied!

One such study was conducted by famed Soviet and Russian astrophysicist and radio astronomer Nikolai Kardashev (1932 – 2019). While considering an important question related to the Search for Extraterrestrial Intelligence (SETI) in 1964, Kardashev proposed a classification scheme for ranking a civilization’s development. This would come to be known as the Kardashev Scale, which remains one of the most influential concepts in SETI to this day.

In 1960, the first modern attempt to detect extraterrestrial communications (“Project Ozma“) was made in the United States. Led by Frank Drake, creator of the Drake Equation and hailed as the “Father of SETI,” this experiment was conducted using the radio telescope at the National Radio Astronomy Observatory in Green Bank, West Virginia.

This experiment monitored two nearby Sun-like stars – Tau Ceti and Epsilon Eridani – for radio signals in the 1420 MHz range, corresponding to the frequency of cold hydrogen gas in interstellar space. While the project failed to detect anything beyond radio static, Ozma paved the way for far more ambitious SETI (and METI) efforts. It also inspired astrophysicists worldwide to consider what future surveys should be on the lookout for.

At a time when a search for extraterrestrial intelligence was more a thought experiment than an actual discipline, physicists in the Soviet Union formulated many of the seminal ideas that would endure until this day. Of these, Nikolai Kardashev was one of the earliest and most consequential thinkers, and his ideas remain foundational to the field of SETI.

Nikolai Kardashev

Coming of age in the postwar era, Kardashev studied under Josef Shklovskii (1916-1985), the celebrated author of Intelligent Life in the Universe. This book was the first general treatise on how humans could search for technologically capable beings in the cosmos. Shklovskii’s book was translated (and added to) by Carl Sagan and became the inspiration for many scientists after it was published in 1966 in the West.

For much of his formative years, Kardashev was on his own. His mother and father were both victims of the Great Purge in 1937 and 38 (respectively), and he was sent to an orphanage. He was eventually released into the custody of his aunt (on his mother’s side), who died in 1948 when Kardashev was 16. His father was eventually shot while his mother worked in a prison labor camp until she was released in 1956.

A year before, Kadashev graduated from Moscow State University, where his studies focused on radio astronomy, an emerging field at the time. He then worked at the Sternberg Astronomical Institute in Moscow, earning his Ph.D. in 1962. Kardashev’s early exposure to the fundamental premises of SETI led him to turn his inventive mind to how radio astronomy could be used to detect transmissions that were not terrestrial in origin.

One of his earliest contributions to SETI came in 1963 while Kardashev was studying CTA-102, a radio source located 8 billion light-years from Earth. Based on previous studies, this object was known to vary in intensity and send out irregular emissions. Kardashev famously suggested that this might be a deliberate attempt by extraterrestrials to send out coded messages.

This theory would eventually be discarded as astronomers learned that CTA-102 is an Active Galactic Nucleus (AGN), aka. a quasar, which astronomers know to be variable in nature. Nevertheless, Kardashev shared this theory and other imaginative ideas in a paper that would establish him among the astronomical community.

Birth of the Scale

This paper, titled “Transmission of Information by Extraterrestrial Civilizations,” was published in 1964. The paper’s purpose was to suggest what types of radio frequencies (and at what energies) SETI researchers should be looking for. In keeping with the idea that there may be some civilizations billions of years older than humanity, it stood to reason that these civilizations would be able to harness levels of energy that were not humanly possible.

To characterize the potential level of a civilization’s development, Kardashev proposed a three-level scale based on the amount of energy they could harness. This Scale included:

Type I – Planetary Civilizations: This refers to those that have developed the means to harness and store all of their home planet’s energy. According to
Did you miss our previous article…
https://www.mansbrand.com/12-expert-tips-for-finding-solitude-when-backpacking/

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Frontier Adventure

The James Webb is Measuring Distant Galaxies 5-10 Times Better Than any Other Telescope

Published

on

On December 25th, 2021, after many years of waiting, the James Webb Space Telescope (JWST) finally launched to space. In the sixth-month period that followed, this next-generation observatory unfurled its Sunshield, deployed its primary and secondary mirrors, aligned its mirror segments, and flew to its current position at the Earth-Sun Lagrange 2 (L2) Point. On July 12th, 2022, the first images were released and presented the most-detailed views of the Universe. Shortly thereafter, NASA released an image of the most distant galaxy ever observed (which existed just 300 million years after the Big Bang).

According to a new study by an international team of scientists, the JWST will allow astronomers to obtain accurate mass measurements of early galaxies. Using data from James Webb’s Near-Infrared Camera (NIRCam), which was provided through the GLASS-JWST-Early Release Science (GLASS-ERT) program, the team obtained mass estimates from some of the distant galaxies that were many times more accurate than previous measurements. Their findings illustrate how Webb will revolutionize our understanding of how the earliest galaxies in the Universe grew and evolved.

The research team (led by Paola Santini of the Astronomical Observatory of Rome) included members from the Instituto Nationale di Astrophysica (INAF) in Italy, the ASTRO 3D collaboration (Australia), the National Astronomical Research Institute of Thailand (ARIT), the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), the Cosmic Dawn Center (DAWN), the Niels Bohr Institute, The Carnegie Institution for Science, the Infrared Processing and Analysis Center at Caltech, and universities and institutes in the U.S., Europe, Australia, and Asia.

As they indicate in their study, stellar mass is one of the most important physical properties (if not the most) for understanding galaxy formation and evolution. It measures the total amount of stars in a galaxy, which are constantly being added through the conversion of gas and dust into new stars. Therefore, it is the most direct means of tracing a galaxy’s growth. By comparing observations of the oldest galaxies in the Universe (those more than 13 billion light years away), astronomers can study how galaxies evolved.

Unfortunately, obtaining accurate measurements of these early galaxies has been an ongoing problem for astronomers. Typically, astronomers will conduct mass-to-light (M/L) ratio measurements – where the light produced by a galaxy is used to estimate the total mass of stars within it – rather than computing the stellar masses on a source-by-source base. To date, studies conducted by Hubble of the most distant galaxies – like GN-z11, which formed about 13.5 billion years ago – were limited to the Ultraviolet (UV) spectrum.

This is because the light from these ancient galaxies experiences significant redshift by the time it reaches us. This means that as the light travels through spacetime, its wavelength is lengthened due to the expansion of the cosmos, effectively shifting it towards the red end of the spectrum. For galaxies whose redshift value (z) is seven or higher – at a distance of 13.46 light-years or more – much of the light will be shifted to the point where it is only visible in the infrared part of the spectrum. As Santini explained to Universe Today via email:

“The bulk of the stars in galaxies, those that mostly contribute to its stellar mass, emit at optical-near infrared (NIR) wavelengths… [B]y the time the light takes to travels from a distant galaxy to our telescopes, the light emitted by its stars is no more in the optical regime. E.g., for a z=7 galaxy, the light originally emitted at 0.6 micron, reaches our telescope with a wavelength of 4.8 micron. The higher the redshift (i.e. the more distant the galaxy), the stronger is this effect.”

“This implies that we need infrared detectors to measure galaxy stellar masses (the light emitted by the bulk of their stars is out of reach of the Hubble Space Telescope). The only IR telescope we had before the advent of JWST was Spitzer Space Telescope, dismissed a few years ago. However, its 85 cm mirror was not comparable with the 6.5 m mirror of JWST. Most of the distant galaxies were out of reach of Spitzer too: due to its limited sensitivity and angular resolution, they were not detected (or affected by high levels of noise) on its images.

redshiftDid you miss our previous article…
https://www.mansbrand.com/a-black-hole-can-tear-a-neutron-star-apart-in-less-than-2-seconds/

Continue Reading

Frontier Adventure

A Black Hole can Tear a Neutron Star Apart in Less Than 2 Seconds

Published

on

Almost seven years ago (September 14th, 2015), researchers at the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves (GWs) for the first time. Their results were shared with the world six months later and earned the discovery team the Noble Prize in Physics the following year. Since then, a total of 90 signals have been observed that were created by binary systems of two black holes, two neutron stars, or one of each. This latter scenario presents some very interesting opportunities for astronomers.

If a merger involves a black hole and neutron star, the event will produce GWs and a serious light display! Using data collected from the three black hole-neutron star mergers we’ve detected so far, a team of astrophysicists from Japan and Germany was able to model the complete process of the collision of a black hole with a neutron star, which included everything from the final orbits of the binary to the merger and post-merger phase. Their results could help inform future surveys that are sensitive enough to study mergers and GW events in much greater detail.

The research team was led by Kota Hayashi, a researcher with Kyoto University’s Yukawa Institute for Theoretical Physics (YITP). He was joined by multiple colleagues from YITP and Toho University in Japan and the Albert Einstein Institute at the Max Planck Institute for Gravitational Physics (MPIGP) in Postdam, Germany. The paper that describes their findings was led by YITP Prof. Koto Hayashi and recently appeared in the scientific journal Physical Review D.

compact objects
The mergers of compact objects discovered so far by LIGO and Virgo (in O1, O2, and O3a). Credit: LIGO Virgo Collaboration / Frank Elavsky, Aaron Geller / Northwestern

To recap, GWs are mysterious ripples in spacetime originally predicted by Einstein’s General Theory of Relativity. They are created whenever massive objects merge and create tidal disruptions to the very fabric of the Universe, which can be detected thousands of light-years away. To date, only three mergers have been observed involving a binary system consisting of a black hole and a neutron star. During one of these – GW170817, detected on August 17th, 2017 – astronomers detected an electromagnetic counterpart to the GWs it produced.

In the coming years, telescopes and interferometers of greater sensitivity are expected to see much more from these events. Based on the mechanics involved, scientists anticipate that black hole-neutron star mergers will include matter ejected from the system and a tremendous release of radiation (which might include short gamma-ray bursts). For their study, the team modeled what black hole-neutron star mergers would look like to test these predictions.

They selected two different model systems consisting of a rotating black hole and a neutron star, with the black hole set at 5.4 and 8.1 solar masses and the neutron star at 1.35 solar masses. These parameters were selected so that the neutron star was likely to be torn apart by tidal forces. The merger process was simulated using the computer cluster “Sakura” at the MPIGP’s Department of Computational Relativistic Astrophysics. In an MPIGP press release, Department director and co-author Masaru Shibata explained:

“We get insights into a process that lasts one to two seconds – that sounds short, but in fact a lot happens during that time: from the final orbits and the disruption of the neutron star by the tidal forces, the ejection of matter, to the formation of an accretion disk around the nascent black hole, and further ejection of matter in a jet. This high-energy jet is probably also a reason for short gamma-ray bursts, whose origin is still mysterious. The simulation results also indicate that the ejected matter should synthesize heavy elements such as gold and platinum.”

The team also shared the details of their simulation in an animation (shown above) via the Max Planck Institute for Gravitational Physics’ Youtube Channel. On the left side, the simulation shows the density profile as blue and green contours, the magnetic field lines that penetrate the black hole are shown as pink curves, and the matter ejected from the system as cloudy white
Did you miss our previous article…
https://www.mansbrand.com/lava-tubes-on-the-moon-maintain-comfortable-room-temperatures-inside/

Continue Reading

Frontier Adventure

Lava Tubes on the Moon Maintain Comfortable Room Temperatures Inside

Published

on

Searching for a comfortable place to set up a research station on the Moon? Look no further than the interior parts of lunar pits and caves. While lack of air will be an issue, new research indicates these underground sanctuaries have steady temperatures that hover around 17 Celsius, or 63 Fahrenheit, even though the Moon’s surface heats up to about 127 C (260 F) during the day and cool to minus 173 C (minus 280 F) at night.

Lunar pits, or lava tubes were discovered in 2009 by the Lunar Reconnaissance Obiter and Japan’s Kaguya spacecraft. These are deep holes on the moon that could open into vast underground tunnels. They likely could serve as a safe shielding from cosmic rays, solar radiation and micrometeorites for future human lunar explorers. But now we know they could provide thermally stable sites for lunar exploration.

These long, winding lava tubes are like structures we have on Earth. They are created when the top of a stream of molten rock solidifies and the lava inside drains away, leaving a hollow tube of rock. For years before their existence was confirmed, scientists thought there were hints that the Moon had lava tubes based on observations of long, winding depressions carved into the lunar surface by the flow of lava, called sinuous rilles.

800px thurston lava tube 1
Thurston Lava Tube on the Big Island of Hawaii. Credit: P. Mouginis-Mark, LPI

So far, about 200 lunar pits have been found and at least 16 of these are probably collapsed lava tubes, with the potential for ‘livable’ space, said Tyler Horvath, a UCLA doctoral student in planetary science, who led the new research. Two of the most prominent pits have visible overhangs that clearly lead to some sort of cave or void, and there is strong evidence that another’s overhang may also lead to a large cave.

Horvath processed images from the Diviner Lunar Radiometer Experiment — a thermal camera and one of six instruments on LRO — to find out if the temperature within the pits diverged from those on the surface. Diviner is designed to measure surface temperatures on the Moon, and Horvath’s team had to focus in on extremely small areas to get their data.

They focused on a pit found in the Sea of Tranquility (Mare Tranquillitatis). This image, below, was taken as the Sun was almost straight overhead, illuminating the region. By comparing this image with previous images that have different lighting, scientists can estimate the depth of the pit. They believe it to be over 100 meters.

m126710873re map thumb 0
This is a spectacular high-Sun view of the Mare Tranquillitatis pit crater, revealing the overhang and deep, dark pit. This image from LRO’s Narrow Angle Camera is 400 meters (1,312 feet) wide, north is up.
Credits: NASA/Goddard/Arizona State University

The researchers used computer modeling to analyze the thermal properties of the rock and lunar dust and to chart the pit’s temperatures over a period of time. Their research, recently published in the journal Geophysical Research Letters, revealed that temperatures within the permanently shadowed reaches of the pit fluctuate only slightly throughout the lunar day, remaining at around 17 C (63 F). If a cave extends from the bottom of the pit, as images taken by the Lunar Reconnaissance Orbiter Camera suggest, it too would have this relatively comfortable temperature. The researchers think the overhang is responsible for the steady temperature, limiting how hot things get during the day and preventing heat from radiating away at night.

However, if this particular pit was to be used as a habitat or research station, there would likely be a heat problem just inside the pit.
Did you miss our previous article…
https://www.mansbrand.com/a-fast-moving-star-is-colliding-with-interstellar-gas-creating-a-spectacular-bow-shock/

Continue Reading

Trending