Connect with us

The center of the Milky Way is a mysterious place. Astronomers think there’s a supermassive black hole there, though it could be dark matter instead. The region is densely packed with stars, dominated by red giants. And because of all the dust between Earth and the galactic center, we can’t see anything with visible light, ultraviolet light, or low-energy x-rays.

But we can detect radio waves, and there are some unexplained ones coming from the center of the galaxy, and adding to the mystery.

Astronomers have discovered a transient source of radio waves at the Milky Way’s center. The team of researchers presented their findings in a paper titled “Discovery of ASKAP J173608.2–321635 as a Highly Polarized Transient Point Source with the Australian SKA Pathfinder.” The lead author is Ziteng Wang, a Ph.D. student in the School of Physics at the University of Sydney. The paper is published in The Astrophysical Journal.

The team knew they’d found something remarkable. “Looking towards the centre of the Galaxy, we found ASKAP J173608.2-321635, named after its coordinates,” said co-author Professor Tara Murphy. “This object was unique in that it started out invisible, became bright, faded away and then reappeared. This behaviour was extraordinary.”

“The strangest property of this new signal is that it is has a very high polarisation. This means its light oscillates in only one direction, but that direction rotates with time,” said lead author Wang. “The brightness of the object also varies dramatically, by a factor of 100, and the signal switches on and off apparently at random. We’ve never seen anything like it.”

What is it? There are lots of different types of variable stars and objects in the sky. They emit variable light all across the spectrum.

Could it be a low-mass star or a substellar object? Could it be a pulsar or a transient magnetar? According to the authors, none of those possibilities matches the observations.

“At first we thought it could be a pulsar – a very dense type of spinning dead star – or else a type of star that emits huge solar flares. But the signals from this new source don’t match what we expect from these types of celestial objects,” Mr. Wang said. The object is highly polarized, just like a pulsar, but the team didn’t detect any pulsations in their data.

They also considered magnetars as the source, which are neutron stars with extreme magnetic fields. But the data didn’t match with what we know about magnetars either. “All radio magnetars show very high degrees of polarization, but their flat radio spectra, in contrast to what we see for ASKAP J173608.2?321635, makes a magnetar an unlikely interpretation,” they write in their paper.

This image from the study shows the location of the variable radio source and other objects in the galactic center. The yellow contours show the ASKAP detection, while the cyan contours show the MeerKAT detection. The best-fit positions from ASKAP and MeerKAT are shown as yellow + and cyan × symbols, respectively. Red inverted Y symbols show the sources from the VVV catalogue, a survey of variables in the infrared. The red Gemini star is a well-known source found with the Gemini Observatory. Image Credit: Wang et al, 2021
This image from the study shows the location of the variable radio source and other objects in the galactic center. The yellow contours show the ASKAP detection, while the cyan contours show the MeerKAT detection. The best-fit positions from ASKAP and MeerKAT are shown as yellow + and cyan  symbols, respectively. Red inverted Y symbols show the sources from the VVV catalogue, a survey of variables in the infrared. The red Gemini star is a well-known source found with the Gemini Observatory. Image Credit: Wang et al, 2021

The team detected six radio signals from the object over the course of nine months. When they searched for the object in visible light, they didn’t find anything. So they decided to try detecting the object with another radio telescope in Australia, the Parkes Observatory. They found nothing.

Undeterred, the team performed follow-up observations with the MeerKAT radio telescope in South Africa, which is even more sensitive. They kept checking with the MeerKAT to see if the intermittent signal would show up again. “We then tried the more sensitive MeerKAT radio telescope in South Africa. Because the signal was intermittent, we observed it for 15 minutes

Frontier Adventure

Starship | 360 Video of Liftoff

hqdefault 4 jpg

hqdefault 5 jpg

Starship returned to integrated flight testing with its second launch from Starbase in Texas. While it didn’t happen in a lab or on a test stand, it was absolutely a test. What we did with this second flight will provide invaluable data to continue rapidly developing Starship.

On November 18, 2023, Starship successfully lifted off at 7:02 a.m. CT from Starbase in Texas and achieved a number of major milestones, including all 33 Raptor engines on the Super Heavy Booster starting up successfully and, for the first time, completed a full-duration burn during ascent.

This 360-degree view comes from the top of the launch tower at Starbase in Texas, providing a front row seat to watch liftoff of the world’s most powerful launch vehicle ever developed.

Follow us on X.com/SpaceX and go to spacex.com for more on this exciting flight.

Did you miss our previous article…
https://mansbrand.com/10-expert-tips-for-hiking-with-trekking-poles-2/

Continue Reading

Frontier Adventure

10 Expert Tips for Hiking With Trekking Poles

Tet19 047 Me on Teton Crest Trail copy cropped 28 jpg

By
Michael Lanza

If
you’ve opened this story, you probably already recognize this truth: For
backpackers, dayhikers, climbers, mountain runners, and others, trekking poles
noticeably reduce strain, fatigue, and impact on leg muscles and joints, feet,
back—and really on your entire body. And that’s true no matter how much weight
you’re carrying, whether a daypack, an ultralight backpack, or a woefully heavy
backpack.

But
if you’ve opened this story, you also probably already have a sense of this
often-overlooked truth: How you use poles matters. If you use them correctly,
you’re gaining their benefits on virtually every step of your hike; if not,
they become dead weight. This story provides 10 highly effective tips on using
poles, from basics like adjusting pole length, gripping the strap, and moving uphill
and downhill on trails, to managing steep terrain, fording streams, advanced
tips for aiding balance, and more.

The tips below are based on my experience of many thousands of trail miles and more than three decades of backpacking, dayhiking, climbing, trail running, and taking ultra-hikes and ultra-runs—plus a quarter-century of testing and reviewing gear as a past field editor for Backpacker magazine and for many years running this blog. I believe this story will give you expert tips on hiking with trekking poles that you will not find anywhere else.

Tet19 047 Me on Teton Crest Trail copy cropped 29 jpg
Hi, I’m Michael Lanza, creator of The Big Outside. Click here to sign up for my FREE email newsletter. Join The Big Outside to get full access to all of my blog’s stories. Click here for my e-books to classic backpacking trips. Click here to learn how I can help you plan your next trip.

A backpacker on the Teton Crest Trail in Grand Teton National Park.
” data-image-caption=”Jeff Wilhelm backpacking the Teton Crest Trail n Grand Teton National Park. Click photo for my e-book “The Complete Guide to Backpacking the Teton Crest Trail.”
” data-medium-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?fit=300%2C203&ssl=1″ data-large-file=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?fit=900%2C608&ssl=1″ src=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=900%2C608&ssl=1″ alt=”A backpacker on the Teton Crest Trail in Grand Teton National Park.” class=”wp-image-36371″ srcset=”https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=1024%2C692&ssl=1 1024w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=300%2C203&ssl=1 300w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=768%2C519&ssl=1 768w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?resize=1080%2C730&ssl=1 1080w, https://i0.wp.com/thebigoutside.com/wp-content/uploads/2019/11/Tet19-110-Tet19-107-Jeff-Wilhelm-backpacking-the-Teton-Crest-Trail-through-North-Fork-Cascade-Canyon-Grand-Teton-N.P..jpg?w=1200&ssl=1 1200w” sizes=”(max-width: 900px) 100vw, 900px” data-recalc-dims=”1″ />Jeff Wilhelm backpacking the Teton Crest Trail n Grand Teton National Park. Click photo for my e-book “The
Did you miss our previous article…
https://mansbrand.com/solar-physics-why-study-it-what-can-it-teach-us-about-finding-life-beyond-earth/

Continue Reading

Frontier Adventure

Solar Physics: Why study it? What can it teach us about finding life beyond Earth?

solar flare.en 750 jpg

Universe Today has investigated the importance of studying impact craters, planetary surfaces, exoplanets, and astrobiology, and what these disciplines can teach both researchers and the public about finding life beyond Earth. Here, we will discuss the fascinating field of solar physics (also called heliophysics), including why scientists study it, the benefits and challenges of studying it, what it can teach us about finding life beyond Earth, and how upcoming students can pursue studying solar physics. So, why is it so important to study solar physics?

Dr. Maria Kazachenko, who is a solar astrophysicist and assistant professor in the Astrophysical & Planetary Science Department at the University of Colorado, Boulder, tells Universe Today, “Solar physics studies how our Sun works, and our Sun is a star. Stars are building blocks of our Universe.  We are made of stardust. Stars provide energy for life. The Sun is our home star – it affects our life on Earth (space weather, digital safety, astronauts’ safety). Therefore, to be safe we need to understand our star. If we do not take our Sun into account, then sad things could happen. The Sun is the only star where we could obtain high-quality maps of magnetic fields, which define stellar activity. To summarize, studying the Sun is fundamental for our space safety and for understanding the Universe.”

The field of solar physics dates to 1300 BC Babylonia, where astronomers documented numerous solar eclipses, and Greek records show that Egyptians became very proficient at predicting solar eclipses. Additionally, ancient Chinese astronomers documented a total of 37 solar eclipses between 720 BC and 480 BC, along with keeping records for observing visible sunspots around 800 BC, as well. Sunspots were first observed by several international astronomers using telescopes in 1610, including Galileo Galilei, whose drawings have been kept to this day.

Presently, solar physics studies are conducted by both ground- and space-based telescopes and observatories, including the National Science Foundation’s (NSF) Daniel K. Inouye Solar Telescope located in Hawai’i and NASA’s Parker Solar Probe, with the latter coming within 7.26 million kilometers (4.51 million miles) of the Sun’s surface in September 2023. But with all this history and scientific instruments, what are some of the benefits and challenges of studying solar physics?

Dr. Kazachenko tells Universe Today that some of the scientific benefits of studying solar physics include “lots of observations; lots of science problems to work on; benefits from cross-disciplinary research (stellar physics, exoplanets communities)” with some of the scientific challenges stemming from the need to use remote sensing, sometimes resulting in data misinterpretation. Regarding the professional aspects, Dr. Kazachenko tells Universe Today that some of the benefits include “small and friendly community, large variety of research problems relying on amazing new observations and complex simulations, ability to work on different types of problems (instrumentation, space weather operation, research)” with some of the professional challenges including finding permanent employment, which she notes is “like everywhere in science”.

solar flare.en 750 1 jpg
Image of the Sun obtained by NASA’s Solar Dynamics Observatory (SDO) on June 20, 2013, with a solar flare discharging on the left side. (Credit: NASA/SDO)

As noted, the study of solar physics involves investigating space weather, which is when the solar wind interacts with the Earth, specifically with our magnetic field, resulting in the beautiful auroras observed in the high northern and southern latitudes. On occasion, the solar wind is strong enough to wreak havoc on satellites and even knock out power grids across the Earth’s surface. This was demonstrated with the Carrington Event on September 1-2, 1859, when fires at telegraph stations were reported across the globe, along with several strong aurora observations, as well. While this event occurred with the Earth’s magnetic field largely deflecting the incoming solar wind, life on this planet could be doomed without our magnetic field protecting us. Therefore, what can solar physics teach us about finding life beyond Earth?

Dr. Kazachenko tells Universe Today, “The Sun can tell us about stellar activity, including flares and coronal mass ejections that might be crucial
Did you miss our previous article…
https://mansbrand.com/gravastars-are-an-alternative-theory-to-black-holes-heres-what-theyd-look-like/

Continue Reading

Trending